MediaPipe

构建多模式应用的机器学习管道
授权协议 Apache 2.0
开发语言 C/C++
所属分类 神经网络/人工智能、 机器学习/深度学习
软件类型 开源软件
地区 不详
投 递 者 端木狐若
操作系统 跨平台
开源组织 Google
适用人群 未知
 软件概览

MediaPipe 是一个基于图形的跨平台框架,用于构建多模式(视频,音频和传感器)应用的机器学习管道。

MediaPipe 可在移动设备、工作站和服务器上跨平台运行,并支持移动 GPU 加速。使用 MediaPipe,可以将应用的机器学习管道构建为模块化组件的图形。

MediaPipe 专为机器学习(ML)从业者而设计,包括研究人员,学生和软件开发人员,他们实施生产就绪的 ML 应用程序,发布伴随研究工作的代码,以及构建技术原型。MediaPipe 的主要用例是使用推理模型和其他可重用组件对应用机器学习管道进行快速原型设计。MediaPipe 还有助于将机器学习技术部署到各种不同硬件平台上的演示和应用程序中。

安装

请遵循这些说明

入门

查看移动和桌面示例

文档

MediaPipe Read-the-Docs 或 docs.mediapipe.dev

查看示例页面,获取有关如何使用 MediaPipe 的教程。

可视化 MediaPipe 图

基于 Web 的可视化工具托管在 viz.mediapipe.dev 上。另请参阅此处的说明。

  • m 在本教程中,我们将学习如何使用python中的mediapipe库进行实时3D骨架检测。 首先,我们得用pip下载下来我们需要用到的模组: pip install mediapipe 这个工具不仅得到了谷歌的支持,而且Mediapipe中的模型也被积极地用于谷歌产品中。因此,这个模组,超级牛皮。 现在,MediaPipe的姿势检测是高保真(高质量)和低延迟(超快)的最先进的解决方案,用于在低

  • 下载源码 git clone https://github.com/google/mediapipe.git 安装Bazelisk ./bazel-5.2.0-installer-linux-x86_64.sh --user 设置环境变量 export PATH="$PATH:$HOME/bin" 编译并运行face_mesh样例CPU bazel build -c opt --define

 相关资料
  • 本文向大家介绍机器学习:知道哪些传统机器学习模型相关面试题,主要包含被问及机器学习:知道哪些传统机器学习模型时的应答技巧和注意事项,需要的朋友参考一下 参考回答: 常见的机器学习算法: 1).回归算法:回归算法是试图采用对误差的衡量来探索变量之间的关系的一类算法。回归算法是统计机器学习的利器。 常见的回归算法包括:最小二乘法(Ordinary Least Square),逐步式回归(Stepwis

  • 从sklearn加载流行数字数据集。数据集模块,并将其分配给可变数字。 分割数字。将数据分为两组,分别命名为X_train和X_test。还有,分割数字。目标分为两组Y_训练和Y_测试。 提示:使用sklearn中的训练测试分割方法。模型选择;将随机_状态设置为30;并进行分层抽样。使用默认参数,从X_序列集和Y_序列标签构建SVM分类器。将模型命名为svm_clf。 在测试数据集上评估模型的准确

  • 每次将一个类别作为正类,其余类别作为负类。此时共有(N个分类器)。在测试的时候若仅有一个分类器预测为正类,则对应的类别标记为最终的分类结果。 【例】当有4个类别的时候,每次把其中一个类别作为正类别,其余作为负类别,共有4种组合,对于这4中组合进行分类器的训练,我们可以得到4个分类器。对于测试样本,放进4个分类器进行预测,仅有一个分类器预测为正类,于是取这个分类器的结果作为预测结果,分类器2预测的结果是类别2,于是这个样本便属于类别

  • 主要内容:Python,NumPy,Pandas ,Scikit-Learn常言道“工欲善其事,必先利其器”,在学习机器学习算法之前,我们需要做一些准备工作,首先要检查自己的知识体系是否完备,其次是要搭建机器学习的开发环境。本教程以讲解算法为主,不会涉及太复杂的应用案例,在讲解过程中会穿插一些示例代码,这样不仅能够帮助你理解算法原理,同时又能让你体会到算法的应用过程。 机器学习的研究方向有很多,比如图像识别、语音识别、自然语言处理、以及深度学习等,因此它是一门较为复杂的技

  • Python 有着海量的可用于数据分析、统计以及机器学习的库,这使得 Python 成为很多数据科学家所选择的语言。 下面我们列出了一些被广泛使用的机器学习及其他数据科学应用的 Python 包。 Scipy 技术栈 Scipy 技术栈由一大批在数据科学中被广泛使用的核心辅助包构成,可用于统计分析与数据可视化。由于其丰富的功能和简单易用的特性,这一技术栈已经被视作实现大多数数据科学应用的必备品了。

  • 主要内容 前言 课程列表 推荐学习路线 数学基础初级 程序语言能力 机器学习课程初级 数学基础中级 机器学习课程中级 推荐书籍列表 机器学习专项领域学习 致谢 前言 我们要求把这些课程的所有Notes,Slides以及作者强烈推荐的论文看懂看明白,并完成所有的老师布置的习题,而推荐的书籍是不做要求的,如果有些书籍是需要看完的,我们会进行额外的说明。 课程列表 课程 机构 参考书 Notes等其他资

  • 机器学习与人工智能学习笔记,包括机器学习、深度学习以及常用开源框架(Tensorflow、PyTorch)等。 机器学习算法 _图片来自scikit-learn_。 机器学习全景图 _图片来自http://www.shivonzilis.com/_。

  • 机器学习与人工智能学习笔记,包括机器学习、深度学习以及常用开源框架(Tensorflow、PyTorch)等。