Generic Memory Manager 是一个速度最快的跨平台的C++内存管理库,它是易用而且可扩展的。
名称 drm-memory, drm-mm, drm-gem, drm-ttm - DRM Memory Management 头文件 #include <xf86drm.h> 描述 很多现代高端GPUs 都带有自己的内存管理器。它们甚至包含有多个不同cache,这些cache在访问时需要同步。纹理,帧buffer和命令buffer,还有其它数据,它们需要被GPU快速的
缓存简介 系统性能优化的第一步,就是使用缓存 不是说严格满足,看情况,存一次能查3次,就值得缓存(大型项目标准) 字典/省市区/配置文件 公告信息/部门/权限/用户 热搜/类别列表/产品列表 缓存优化性能,核心就是结果重用,下一次请求还是用上一次的结果 缓存究竟哪里用? 满足哪些特点适合用缓存? 访问频繁+耗时耗资源+相对稳定+体积不那么大 使用方法(add填入参数,第一个参数键值,第二个缓存数据
对于一个基于图论的框架来说,节点和边是最小的部件。实际应用中,这些部件构成了各种有向图。比如一个有环图,它的数据流动就是一个环形,部件之间的持有关系如果不能很好的处理,那么可能就会存在内存问题。EasyReact 的内存管理逻辑非常简单,也非常精巧。可以让框架使用者无需关注太多的细节即可轻松的使用,而不必担心本框架涉及的内存方面的问题。 中间节点 节点包含了 fork、map、filter、ski
在计算系统中,通常存储空间可以分为两种:内部存储空间和外部存储空间。内部存储空间通常访问速度比较快,能够按照变量地址随机地访问,也就是我们通常所说的 RAM(随机存储器),可以把它理解为电脑的内存;而外部存储空间内所保存的内容相对来说比较固定,即使掉电后数据也不会丢失,这就是通常所讲的 ROM(只读存储器),可以把它理解为电脑的硬盘。 计算机系统中,变量、中间数据一般存放在 RAM 中,只有在实际
内存生命周期 垃圾回收 垃圾回收在计算机科学中是一种自动的内存管理机制。当一个计算机上的动态内存不再需要时,就应该予以释放以让出内存,这种内存资源管理称为垃圾回收。垃圾回收器可以让程序员减轻许多负担,也减少程序员犯错的机会。 特征 垃圾回收基于两个原理: 考虑某个对象在未来的程序运行中将不会被访问; 向这些对象要求归还内存。 然而,最主要的也是最艰难的部分就是找到「所分配的内存确实已经不再需要了」
主要内容:一、redis的内存管理,二、源码分析,三、总结一、redis的内存管理 一般来说,稍微有点规模的软件,都会自己搞一块内存管理,原因很简单,统一管理内存,适应自己的场景。其实按大牛们的话,这未必是最优选择,实在是小看了写库的那群大牛们。不过说归说,人家写也不会给你报备,想写自然就写了。Redis就听从了大牛的看法,使用了底层更好的内存分配库,根据情况使用tmalloc,jemalloc 以及glibc中的 malloc(pmalloc)。 一般
本章描述 Linux 内核中的内存管理。在本章中你会看到一系列描述 Linux 内核内存管理框架的不同部分的帖子。 内存块 - 描述早期的 memblock 分配器。 固定映射地址和 ioremap - 描述固定映射的地址和早期的 ioremap 。 kmemcheck - 第三部分描述 kmemcheck 工具。
物理内存管理 接下来将首先对实验的执行流程做个介绍,并进一步介绍如何探测物理内存的大小与布局,如何以页为单位来管理计算机系统中的物理内存,如何设计物理内存页的分配算法,最后比较详细地分析了在80386的段页式硬件机制下,ucore操作系统把段式内存管理的功能弱化,并实现以分页为主的页式内存管理的过程。
物理内存管理 物理页 通常,我们在分配物理内存时并不是以字节为单位,而是以一物理页(Frame),即连续的 4 KB 字节为单位分配。我们希望用物理页号(Physical Page Number,PPN)来代表一物理页,实际上代表物理地址范围在 [PPN×4KB,(PPN+1)×4KB)[\text{PPN}\times 4\text{KB},(\text{PPN}+1)\times 4\text
一、内存连续分配 主要是指动态分区分配时所采用的几种算法。 动态分区分配又称为可变分区分配,是一种动态划分内存的分区方法。这种分区方法不预先将内存划分,而是在进程装入内存时,根据进程的大小动态地建立分区,并使分区的大小正好适合进程的需要。因此系统中分区的大小和数目是可变的。 首次适应(First Fit)算法: 空闲分区以地址递增的次序链接。分配内存时顺序查找,找到大小能满足要求的第一个空闲分区。