DLRM(Deep Learning Recommendation Model)是深度学习推荐模型的实现,用于个性化推荐。
该模型输入有密集和稀疏的特性,前者是浮点值的向量,后者是嵌入表的稀疏索引列表,嵌入表由浮点值向量组成。所选择的矢量被传递到由三角形表示的 mlp 网络,在一些情况下,矢量通过操作符(Ops)进行交互。
output:
probability of a click
model: |
/\
/__\
|
_____________________> Op <___________________
/ | \
/\ /\ /\
/__\ /__\ ... /__\
| | |
| Op Op
| ____/__\_____ ____/__\____
| |_Emb_|____|__| ... |_Emb_|__|___|
input:
[ dense features ] [sparse indices] , ..., [sparse indices]
更精确的模型层定义:
完全连接的 mlp 层
z = f(y)
y = Wx + b
嵌入查找(对于稀疏索引列表 p=[p1,...,pk])
z = Op(e1,...,ek)
obtain vectors e1=E[:,p1], ..., ek=E[:,pk]
Operator Op 可以是以下之一
Sum(e1,...,ek) = e1 + ... + ek
Dot(e1,...,ek) = [e1'e1, ..., e1'ek, ..., ek'e1, ..., ek'ek]
Cat(e1,...,ek) = [e1', ..., ek']'
其中,' 表示转置操作
要求:
sok dlrm数据 下载terebate数据: https://ailab.criteo.com/ressources/ # Usage: dlrm_raw input_dir output_dir --train {days for training} --test {days for testing} $ dlrm_raw ./ ./ \ --train 0,1,2,3,4,5,6,7,8,
人工智能相关技术开发,很多时候都需要大型科技企业提供资源方可顺利进行。其中社群在这方面投放不少资源,最近再次将旗下人工智能工具开源,为开源开发社群提供实际协助。这次开源的是深度学习建议模型(Deep Learning Recommendation Model,DLRM)。DLRM 是先进的 AI 模型,用于生产环境提供个人化结果。模型可用于 社群的 PyTorch、社群分布式学习框架 Caffe2
参考:https://mp.weixin.qq.com/s/mUNjLuOG2UvztCEP3wyPPw 代码:https://github.com/facebookresearch/dlrm 转载于:https://www.cnblogs.com/graybird/p/11247806.html
我试图解决序列完成的问题。假设我们有基本真值序列(1,2,4,7,6,8,10,12,18,20) 我们模型的输入是一个不完整的序列。i、 e(1,2,4,10,12,18,20)。从这个不完整序列中,我们想要预测原始序列(地面真值序列)。哪些深度学习模型可以用来解决这个问题? 这是编码器-解码器LSTM体系结构的问题吗? 注:我们有数千个完整的序列来训练和测试模型。 感谢您的帮助。
主要内容 课程列表 专项课程学习 辅助课程 论文专区 课程列表 课程 机构 参考书 Notes等其他资料 卷积神经网络视觉识别 Stanford 暂无 链接 神经网络 Tweet 暂无 链接 深度学习用于自然语言处理 Stanford 暂无 链接 自然语言处理 Speech and Language Processing 链接 专项课程学习 下述的课程都是公认的最好的在线学习资料,侧重点不同,但推
Google Cloud Platform 推出了一个 Learn TensorFlow and deep learning, without a Ph.D. 的教程,介绍了如何基于 Tensorflow 实现 CNN 和 RNN,链接在 这里。 Youtube Slide1 Slide2 Sample Code
推荐系统是针对消费者过度选择的直观防线。 鉴于网络上可用信息的爆炸性增长,用户经常受到无数产品,电影或餐馆的欢迎。 原文:Deep Learning based Recommender System: A Survey and New Perspectives (arxiv 1707.07435)
现在开始学深度学习。在这部分讲义中,我们要简单介绍神经网络,讨论一下向量化以及利用反向传播(backpropagation)来训练神经网络。 1 神经网络(Neural Networks) 我们将慢慢的从一个小问题开始一步一步的构建一个神经网络。回忆一下本课程最开始的时就见到的那个房价预测问题:给定房屋的面积,我们要预测其价格。 在之前的章节中,我们学到的方法是在数据图像中拟合一条直线。现在咱们不
深度学习的总体来讲分三层,输入层,隐藏层和输出层。如下图: 但是中间的隐藏层可以是多层,所以叫深度神经网络,中间的隐藏层可以有多种形式,就构成了各种不同的神经网络模型。这部分主要介绍各种常见的神经网络层。在熟悉这些常见的层后,一个神经网络其实就是各种不同层的组合。后边介绍主要基于keras的文档进行组织介绍。
Python 是一种通用的高级编程语言,广泛用于数据科学和生成深度学习算法。这个简短的教程介绍了 Python 及其库,如 Numpy,Scipy,Pandas,Matplotlib,像 Theano,TensorFlow,Keras 这样的框架。
你拿起这本书的时候,可能已经知道深度学习近年来在人工智能领域所取得的非凡进展。在图像识别和语音转录的任务上,五年前的模型还几乎无法使用,如今的模型的表现已经超越了人类。