HanLP 是由一系列模型与算法组成的 Java 工具包,目标是普及自然语言处理在生产环境中的应用。HanLP 具备功能完善、性能高效、架构清晰、语料时新、可自定义的特点。
HanLP 提供下列功能:
中文分词
最短路分词
N-最短路分词
CRF分词
索引分词
极速词典分词
用户自定义词典
词性标注
命名实体识别
中国人名识别
音译人名识别
日本人名识别
地名识别
实体机构名识别
关键词提取
TextRank关键词提取
自动摘要
TextRank自动摘要
短语提取
基于互信息和左右信息熵的短语提取
拼音转换
多音字
声母
韵母
声调
简繁转换
繁体中文分词
简繁分歧词
文本推荐
语义推荐
拼音推荐
字词推荐
依存句法分析
MaxEnt依存句法分析
CRF依存句法分析
语料库工具
分词语料预处理
词频词性词典制作
BiGram统计
词共现统计
CoNLL语料预处理
CoNLL UA/LA/DA评测工具
在提供丰富功能的同时,HanLP 内部模块坚持低耦合、模型坚持惰性加载、服务坚持静态提供、词典坚持明文发布,使用非常方便,同时自带一些语料处理工具,帮助用户训练自己的语料。
使用HanLP进行分词和实体抽取 HanLP Github地址:https://github.com/hankcs/HanLP HanLP文档地址:https://hanlp.hankcs.com/docs/api/hanlp/pretrained/index.html 多任务模型 首先我们来了解下HanLP有哪些预训练模型,其分为单任务模型和多任务模型,多任务模型就是可以同时执行多个任务,其模型
Hanlp 简介 Hanlp支持中文分词(N-最短路分词、CRF分词、索引分词、用户自定义词典、词性标注),命名实体识别(中国人名、音译人名、日本人名、地名、实体机构名识别),关键词提取,自动摘要,短语提取,拼音转换,简繁转换,文本推荐,依存句法分析(MaxEnt依存句法分析、CRF依存句法分析)。提供Lucene插件,兼容Lucene4.x。 Hanlp 安装 命令行输入: pip instal
1、hanlp理解 HanLP是一系列模型与算法组成的NLP工具包,由大快搜索主导并完全开源,目标是普及自然语言处理在生产环境中的应用。HanLP具备功能完善、性能高效、架构清晰、语料时新、可自定义的特点。 2、hanlp参考gitHup地址 https://github.com/hankcs/HanLP 3、hanlp IDEA项目搭建 (1)gitHub下载data数据包 (2)下载jar包
最新的1.8.X的源代码没找到注释,无意中发现1.7X有注释,拿出来,以后备用。 /* * <summary></summary> * <author>He Han</author> * <email>hankcs.cn@gmail.com</email> * <create-date>2014/10/17 19:02</create-date> * * <copyright file
HanLP: Han Language Processing 汉语言处理包 HanLP是由一系列模型与算法组成的Java工具包,目标是促进自然语言处理在生产环境中的应用。HanLP具备功能完善、性能高效、架构清晰、语料时新、可自定义的特点。 HanLP提供下列功能: 中文分词 最短路分词 N-最短路分词 CRF分词 索引分词 极速词典分词 用户自定义词典 词性标注 命名实体识别 中国人名识别 音译
安装 无论是Windows、Linux还是macOS,HanLP的安装只需一句话搞定: pip install hanlp_restful -U 创建客户端 from hanlp_restful import HanLPClient HanLP = HanLPClient('https://www.hanlp.com/api', auth=None, language='zh') # auth不填
简介 中英文NLP处理工具包, 基于tensorflow2.0, 使用在学术界和行业中推广最先进的深度学习技术。 hanlp 安装 这个安装很离谱,在网站https://pypi.org/project/hanlp/#description上有显示对应的版本及适用情况。 官网上 hanlp 只支持 python3.6~3.9,但其中需要用到 TensorFlow 2.0 以上的版本, 而 Tens
主要内容 前言 课程列表 推荐学习路线 数学基础初级 程序语言能力 机器学习简介 自然语言学习初级 数学和机器学习知识补充 自然语言处理中级 自然语言处理专项领域学习 前言 我们要求把这些课程的所有Notes,Slides以及作者强烈推荐的论文看懂看明白,并完成所有的老师布置的习题,而推荐的书籍是不做要求的,如果有些书籍是需要看完的,我们会进行额外的说明。 课程列表 课程 机构 参考书 Notes
知识图谱 接口: nlp_ownthink 目标地址: https://ownthink.com/ 描述: 获取思知-知识图谱的接口, 以此来查询知识图谱数据 限量: 单次返回查询的数据结果 输入参数 名称 类型 必选 描述 word str Y word="人工智能" indicator str Y indicator="entity"; Please refer Indicator Info
PyTorch 自然语言处理(Natural Language Processing with PyTorch 中文版)
这是一本关于自然语言处理的书。所谓“自然语言”,是指人们日常交流使用的语言,如英语,印地语,葡萄牙语等。
自然语言处理怎么学? 先学会倒着学,倒回去看上面那句话:不管三七二十一先用起来,然后再系统地学习 nltk是最经典的自然语言处理的python库,不知道怎么用的看前几篇文章吧,先把它用起来,最起码做出来一个词性标注的小工具 自然语言处理学什么? 这门学科的知识可是相当的广泛,广泛到你不需要掌握任何知识就可以直接学,因为你不可能掌握它依赖的全部知识,所以就直接冲过去吧。。。 话说回来,它到底包括哪些
自然语言处理之序列模型 - 小象学院 解决 NLP 问题的一般思路 这个问题人类可以做好么? - 可以 -> 记录自己的思路 -> 设计流程让机器完成你的思路 - 很难 -> 尝试从计算机的角度来思考问题 NLP 的历史进程 规则系统 正则表达式/自动机 规则是固定的 搜索引擎 “豆瓣酱用英语怎么说?” 规则:“xx用英语怎么说?” => translate(XX, English)
自然语言处理(NLP)是指使用诸如英语之类的自然语言与智能系统通信的AI方法。 当您希望像机器人这样的智能系统按照您的指示执行,当您想要听取基于对话的临床专家系统的决定等时,需要处理自然语言。 NLP领域涉及使计算机使用人类使用的自然语言来完成有用的任务。 NLP系统的输入和输出可以是 - Speech 书面文字 NLP的组成部分 在本节中,我们将了解NLP的不同组件。 NLP有两个组成部分。 组
来自 PythonProgramming.net 的文章,欢迎阅读自然语言处理系列教程,使用 Python 的自然语言工具包 NLTK 模块。