This repository simulates an FBMC and OFDM transmission over a doubly-selective channel, including doubly-selective MMSE channel estimation in combination with interference cancellation.All figures from R. Nissel et al. “Doubly-Selective Channel Estimation inFBMC-OQAM and OFDM Systems”, IEEE VTC Fall, 2018, can be reproduced.
Supported Waveforms:
Note that I use a matrix based system model. This makes the derivation of the correlation matrices relatively easy but also requires a large memory. If one wants to simulate over a higher bandwidth, either the system model must be split into smaller chunks, or the matrices must be explicitly expressed by summations.
We used Windows 7 (64bit) and Matlab R2013b/2016a, but newer versions (and some older) should also work.
All figure from “Doubly-Selective Channel Estimation in FBMC-OQAM and OFDM Systems” can be reproduced. The figure numbers are the same as in the paper.
Figure 1:Just an illustration.
Figure 2:Please run DoublySelectiveChannelEstimation.m
. To truly reproduce Figure 2, the lines 42-46 must be uncommented (increases the simulation time).
Figure 3:Please run DoublySelectiveChannelEstimation.m
. To truly reproduce Figure 3, the lines 42-46 must be uncommented (increases the simulation time).
Figure 4:Please run DoublySelectiveChannelEstimation.m
. To truly reproduce Figure 4, the lines 42-46 must be uncommented (increases the simulation time).
Figure 5:Please run DoublySelectiveChannelEstimation.m
. To truly reproduce Figure 5, the lines 42-46 must be uncommented (increases the simulation time).
The Matlab code SimpleVersion_DoublyFlat.m
simulates an FBMC and OFDM transmission over a doubly-flat channel, including channel estimation. In particular, it illustrates the auxiliary symbol method and the data spreading approach, with much less overhead than for the doubly-selective channel estimation method. The script is based on my paper “On pilot-symbol aided channel estimation in FBMC-OQAM”.
@inproceedings{Nissel2018VTC,
author = {R. Nissel and F. Ademaj and M. Rupp},
booktitle = {IEEE Vehicular Technology Conference (VTC Fall)},
title = {Doubly-Selective Channel Estimation in {FBMC-OQAM} and {OFDM} Systems},
year = {2018},
pages = {1-5},
month = {Aug},
}
3记录一下openpose tf版本的安装全流程,踩了所有的坑,希望你可以一次性安装成功。 环境:Ubuntu16.04+Anaconda3 code:https://github.com/ildoonet/tf-pose-estimation paper:https://arxiv.org/pdf/1611.08050.pdf 1)创建虚拟环境+安装cuda+cudnn+tensorflow-g
2019 IEEE https://arxiv.org/abs/1810.05893 代码:https://gitee.com/joannne/ChannelNet Pilot Pattern Design for Deep Learning-Based Channel Estimation in OFDM Systems,2020 2020 https://ieeexplore.ieee.org
Channel 到概念上的端点的虚拟连接,用于执行RPC。 通道可以根据配置,负载等自由地实现与端点零或多个实际连接。通道也可以自由地确定要使用的实际端点,并且可以在每次 RPC 上进行更改,从而允许客户端负载平衡。应用程序通常期望使用存根(stub),而不是直接调用这个类。 应用可以通过使用 ClientInterceptor 装饰 Channel 实现来为 stub 添加常见的切面行为。预计大
建议先查看概览,了解一些协程基本概念后再看此节。 通道,用于协程间通讯,支持多生产者协程和多消费者协程。底层自动实现了协程的切换和调度。 实现原理 通道与PHP的Array类似,仅占用内存,没有其他额外的资源申请,所有操作均为内存操作,无IO消耗 底层使用PHP引用计数实现,无内存拷贝。即使是传递巨大字符串或数组也不会产生额外性能消耗 channel基于引用计数实现,是零拷贝的 使用示例 Co\r
channel数据结构 Go语言channel是first-class的,意味着它可以被存储到变量中,可以作为参数传递给函数,也可以作为函数的返回值返回。作为Go语言的核心特征之一,虽然channel看上去很高端,但是其实channel仅仅就是一个数据结构而已,结构体定义如下: struct Hchan { uintgo qcount; // 队列q中的总数据数量 uintgo dataq
基于 Swoole 提供的 Swoole\Coroutine\Channel,直接在配置文件中设置,就可以在worker进程中使用,数据互通。 Swoole\Coroutine\Channel可以作为队列使用,支持多生产者协程和多消费者协程。底层自动实现了协程的切换和调度。 配置方式 在项目配置文件中加入以下节 'coroutineChannels' => [ // 定义名为n
channel演示 这是我们最终得到的接口: <?php function go(...$args) { spawn(...$args); } function chan($n = 0) { if ($n === 0) { return new Channel(); } else { return new BufferChannel($n
缓存channel 接下来我们来实现带缓存的Channel: Sends to a buffered channel block only when the buffer is full. Receives block when the buffer is empty. <?php class BufferChannel { // 缓存容量 public $cap; /