今天在弄一个查找连通的最大面积的问题。
要把图像弄成黑底,白字,这样才可以正确找到。
然后调用下边的方法:
RETR_CCOMP:提取所有轮廓,并将轮廓组织成双层结构(two-level hierarchy),顶层为连通域的外围边界,次层位内层边界
#include <opencv2/imgproc.hpp> #include <opencv2/highgui.hpp> using namespace cv; using namespace std; int main( int argc, char** argv ) { Mat src = imread( argv[1] ); int largest_area=0; int largest_contour_index=0; Rect bounding_rect; Mat thr; cvtColor( src, thr, COLOR_BGR2GRAY ); //Convert to gray threshold( thr, thr, 125, 255, THRESH_BINARY ); //Threshold the gray bitwise_not(thr,thr); //这里先变反转颜色 vector<vector<Point> > contours; // Vector for storing contours findContours( thr, contours, RETR_CCOMP, CHAIN_APPROX_SIMPLE ); // Find the contours in the image for( size_t i = 0; i< contours.size(); i++ ) // iterate through each contour. { double area = contourArea( contours[i] ); // Find the area of contour if( area > largest_area ) { largest_area = area; largest_contour_index = i; //Store the index of largest contour bounding_rect = boundingRect( contours[i] ); // Find the bounding rectangle for biggest contour } } drawContours( src, contours,largest_contour_index, Scalar( 0, 255, 0 ), 2 ); // Draw the largest contour using previously stored index. imshow( "result", src ); waitKey(); return 0; }
方法二: connectedComponentsWithStats
std::pair< int , int > MaxAreaFromSource(Mat srcImage, Mat &dstImage, int index) { /* vector<vector<cv::Point> > contours; // Vector for storing contours int largest_area=0; size_t largest_contour_index=0; Rect bounding_rect; findContours( srcImage, contours, RETR_CCOMP, CHAIN_APPROX_SIMPLE ); // Find the contours in the image for( size_t i = 0; i< contours.size(); i++ ) // iterate through each contour. { double area = contourArea( contours[i] ); // Find the area of contour if( area > largest_area ) { largest_area = area; largest_contour_index = i; //Store the index of largest contour bounding_rect = boundingRect( contours[i] ); // Find the bounding rectangle for biggest contour } } Mat dst; cvtColor(srcImage, dst, CV_GRAY2RGB); drawContours( dst, contours,largest_contour_index, Scalar( 0, 255, 0 ), 2 ); // Draw the largest contour using previously stored index. imshow( "result", dst ); waitKey(); printf("%%%%%%%%%%%max area:%d\n", largest_area); return make_pair( largest_area, index); */ cv::Mat img_bool, labels, stats, centroids, img_color, img_gray; //连通域计算 int nccomps = cv::connectedComponentsWithStats ( srcImage, //二值图像 labels, //和原图一样大的标记图 stats, //nccomps×5的矩阵 表示每个连通区域的外接矩形和面积(pixel) centroids //nccomps×2的矩阵 表示每个连通区域的质心 ); //cv::imshow("labels", labels); //cv::waitKey(); vector<cv::Vec3b> colors(nccomps); colors[0] = cv::Vec3b(0,0,0); // background pixels remain black. printf( "index:%d==================\n",index ); vector< int >vec_width,vec_area,vec_height; for(int label = 1; label < nccomps; ++label) { colors[label] = cv::Vec3b( (std::rand()&255), (std::rand()&255), (std::rand()&255) ); std::cout << "Component "<< label << std::endl; std::cout << "CC_STAT_LEFT = " << stats.at<int>(label,cv::CC_STAT_LEFT) << std::endl; std::cout << "CC_STAT_TOP = " << stats.at<int>(label,cv::CC_STAT_TOP) << std::endl; std::cout << "CC_STAT_WIDTH = " << stats.at<int>(label,cv::CC_STAT_WIDTH) << std::endl; std::cout << "CC_STAT_HEIGHT = " << stats.at<int>(label,cv::CC_STAT_HEIGHT) << std::endl; std::cout << "CC_STAT_AREA = " << stats.at<int>(label,cv::CC_STAT_AREA) << std::endl; std::cout << "CENTER = (" << centroids.at<double>(label, 0) <<","<< centroids.at<double>(label, 1) << ")"<< std::endl << std::endl; int area = stats.at<int>(label,cv::CC_STAT_AREA); int left = stats.at<int>(label,cv::CC_STAT_LEFT); int top = stats.at<int>(label,cv::CC_STAT_TOP); int width = stats.at<int>(label,cv::CC_STAT_WIDTH); int height = stats.at<int>(label,cv::CC_STAT_HEIGHT); vec_area.push_back(area); vec_width.push_back(width); vec_height.push_back(height); } vector<int>::iterator bigwidth = std::max_element(std::begin(vec_width), std::end(vec_width)); vector<int>::iterator bigheight = std::max_element(std::begin(vec_height), std::end(vec_height)); vector<int>::iterator bigarea = std::max_element(std::begin(vec_area), std::end(vec_area)); //printf( "area:%d------------width:%d height:%d \n", *bigarea, *bigwidth, *bigheight ); //按照label值,对不同的连通域进行着色 img_color = cv::Mat::zeros(srcImage.size(), CV_8UC3); for( int y = 0; y < img_color.rows; y++ ) for( int x = 0; x < img_color.cols; x++ ) { int label = labels.at<int>(y, x); CV_Assert(0 <= label && label <= nccomps); img_color.at<cv::Vec3b>(y, x) = colors[label]; } cv::imshow("color", img_color); cv::waitKey(); return make_pair( *bigarea , index ); }
我先用这个函数实现了一下,效果正确,还是opencv demo 是正确的,网上找了个例子,害死我了。
说明一下:方法一 比 第二种方法 运行速度快很多哦! 这一点很重要。
以上这篇opencv 查找连通区域 最大面积实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持小牛知识库。
本文向大家介绍Opencv求取连通区域重心实例,包括了Opencv求取连通区域重心实例的使用技巧和注意事项,需要的朋友参考一下 我们有时候需要求取某一个物体重心,这里一般将图像二值化,得出该物体的轮廓,然后根据灰度重心法,计算出每一个物体的中心。 步骤如下: 1)合适的阈值二值化 2)求取轮廓 3)计算重心 otsu算法求取最佳阈值 otsu法(最大类间方差法,有时也称之为大津算法)使用的是聚类的
考虑一个N行M列的矩阵,其中每个单元格包含一个“0”或一个“1”,任何包含1的单元格都称为填充单元格。如果两个单元在水平、垂直或对角线上相邻,则称它们是相连的。如果一个或多个填充的单元格连接在一起,它们就形成了一个区域。任务是找到最大区域的单位面积。 下面是我的代码: 下面提到的测试用例的代码不起作用: 1 4 7 1 1 1 1 0 0 1 1 0 1 0 0 0 1 0 1 0 0 1 1 1
给定n个非负整数a1, a2,..., an,其中每个表示坐标(i, ai)处的点。绘制n条垂直线,使得线i的两个endpoint位于(i, ai)和(i,0)。找到两条线,它们与x轴一起构成一个容器,使得容器中包含最多的水。 注意:容器不能倾斜。 一种解决方案可能是我们取每一行并找到每一行的区域。这需要O(n^2)。没有时间效率。 另一种解决方案是使用DP找到每个索引的最大面积,然后在索引n处,
本文向大家介绍OPENCV去除小连通区域,去除孔洞的实例讲解,包括了OPENCV去除小连通区域,去除孔洞的实例讲解的使用技巧和注意事项,需要的朋友参考一下 一、对于二值图,0代表黑色,255代表白色。去除小连通区域与孔洞,小连通区域用8邻域,孔洞用4邻域。 函数名字为:void RemoveSmallRegion(Mat &Src, Mat &Dst,int AreaLimit, int Chec
问题内容: 我有以下数据按player_id和match_date排序。我想找出连续运行次数最多的记录组(从2014-04-03到2014-04-12连续3次运行4次) 我想出了以下SQL: 但这 延续 了之前连续运行的排名(由于玩家1已经出现3次,因此在2014-04-19进行的4次针对Player 1的排名预计为1,但排名为4)。同样,在2014-04-19上,玩家2的23奔跑有望获得等级1,
问题内容: 在研究G1 GC时,我发现了这篇文章:http : //www.oracle.com/technetwork/articles/java/g1gc-1984535.html。在该文章中,内容如下: G1 GC是一个区域化的,按代划分的垃圾收集器,这意味着Java对象堆(堆)被划分为多个大小相等的区域。启动时,Java虚拟机(JVM)设置区域大小。区域大小可以从1 MB到32 MB不等,