当前位置: 首页 > 编程笔记 >

Opencv实现傅里叶变换

曹普松
2023-03-14
本文向大家介绍Opencv实现傅里叶变换,包括了Opencv实现傅里叶变换的使用技巧和注意事项,需要的朋友参考一下

傅里叶变换将图像分解成其正弦和余弦分量,它将图像由空域转换为时域。任何函数都可以近似的表示为无数正弦和余弦函数的和,傅里叶变换就是实现这一步的,数学上一个二维图像的傅里叶变换为:

 

公式中,f是图像在空域的值,F是频域的值。转换的结果是复数,但是不可能通过一个真实图像和一个复杂的图像或通过大小和相位图像去显示这样的一个图像。然而,在整个图像处理算法只对大小图像是感兴趣的,因为这包含了所有我们需要的图像几何结构的信息。

可通过以下几步显示一副傅里叶变换后的图像

1、将图像扩展到它的最佳尺寸,DFT(直接傅里叶变换)的性能依赖于图片的尺寸,当图像是2,3,5的倍数时往往是最快的。因此,为了达到最优性能通常采用垫边界值的方法,得到一个最佳的尺寸。

2、为傅立叶变换结果的实部和虚部分配存储空间。傅里叶变换的结果是一个复数,这意味着每幅图的结果都有一个实部和虚部,此外,频域范围远远大于它对应的空间范围。因此,我们这些通常至少以一个浮点数格式存储这些数值。因此,我们会将我们的输入图像转换为这种类型并且扩展它与另一通道存放复数值

3、进行傅里叶变换。

4、将复数转换为幅值,DFT的幅值由以下公式得出:

5、切换到对数刻度。对图像进行对数尺度的缩放,结果证明,傅立叶系数矩阵的动态范围太大,无法显示在屏幕上,我们无法通过这样去观察一些小的和高的变化值。因此那些高的数值将转化成白点而小的数值会变成黑点,使用灰度值进行可视化,我们可以将线性刻度转换为对数刻度,以便于观察。

 

6、剪切和重分布幅度图象,第一步我们扩展了图像,这里我们去掉扩展的那部分值,基于可视化的目的,我们还可以重新排列结果的象限,使原点(0,0)对应于与图像中心

7、归一化。目前得到的幅值图像仍然太大,超出了显示的范围,归一化这范围内的值,可以进一步达到可视化的目的

实现程序

void _DFT(){
 //1以灰度模式读取原图像并显示
 Mat srcImage = imread("miFan.jpg",0);
 if (!srcImage.data){ cout << "Error\n"; }
 imshow("原图像", srcImage);

 //2将输入图像扩展到最佳尺寸,边界用0补充
 int m = getOptimalDFTSize(srcImage.rows);
 int n = getOptimalDFTSize(srcImage.cols);

 //将添加的像素初始化为0
 Mat padded;
 copyMakeBorder(srcImage, padded, 0, m - srcImage.rows,
  0, n - srcImage.cols, BORDER_CONSTANT, Scalar::all(0));

 //3为傅里叶变换的结果(实部和虚部)分配存储空间
 //将数组组合合并为一个多通道数组
 Mat planes[] = { Mat_<float>(padded), Mat::zeros(padded.size(), CV_32F) };
 Mat complexI;
 merge(planes, 2, complexI);

 //4进行傅里叶变换
 dft(complexI, complexI);

 //5将复数转换为幅值,即=> log(1 + sqrt(Re(DFT(I))^2 + Im(DFT(I))^2))
 //将多通道数组分离为几个单通道数组
 split(complexI, planes);//planes[0] = Re(DFT(I), planes[1] = Im(DFT(I))
 magnitude(planes[0], planes[1], planes[0]);
 Mat magImage = planes[0];

 //6进行对数尺度缩放
 magImage += Scalar::all(1);
 log(magImage, magImage);//求自然对数

 //7剪切和重分布幅度图象限
 //若有奇数行或奇数列,进行频谱剪裁
 magImage = magImage(Rect(0, 0, magImage.cols&-2, magImage.rows&-2));
 //重新排列傅立叶图像中的象限,使得原点位于图像中心 
 int cx = magImage.cols / 2;
 int cy = magImage.rows / 2;
 Mat q0(magImage, Rect(0, 0, cx, cy));
 Mat q1(magImage, Rect(cx, 0, cx, cy));
 Mat q2(magImage, Rect(0,cy,cx,cy));
 Mat q3(magImage, Rect(cx,cy,cx,cy));
 //交换象限(左上与右下进行交换)
 Mat tmp;
 q0.copyTo(tmp);
 q3.copyTo(q0);
 tmp.copyTo(q3);
 //交换象限(右上与左下进行交换)
 q1.copyTo(tmp);
 q2.copyTo(q1);
 tmp.copyTo(q2);

 //8归一化,用0到1的浮点值将矩阵变换为可视的图像格式
 normalize(magImage, magImage, 0, 1, CV_MINMAX);

 //9显示
 imshow("频谱增幅", magImage);

 waitKey();
}

傅里叶变换后的图片

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持小牛知识库。

 类似资料:
  • 目标 在本节中,我们将学习 使用OpenCV查找图像的傅立叶变换 利用Numpy中可用的FFT函数 傅立叶变换的某些应用程序 我们将看到以下函数:cv.dft(),cv.idft()等 理论 傅立叶变换用于分析各种滤波器的频率特性。对于图像,使用2D离散傅里叶变换(DFT)查找频域。一种称为快速傅立叶变换(FFT)的快速算法用于DFT的计算。关于这些的详细信息可以在任何图像处理或信号处理教科书中找

  • 我不太精通Java,所以请保持简单。不过,我会尽力理解你发布的所有内容。这是我的问题。 我已经编写了代码来记录来自外部麦克风的音频并将其存储在. wave中。存储此文件与存档目的相关。我需要做的是对存储的音频进行FFT。 我的方法是将wav文件作为字节数组加载并对其进行转换,问题是1。我需要摆脱一个标题,但我应该能够做到这一点和2。我得到了一个字节数组,但是我在网上找到的大多数(如果不是全部)FF

  • 目标 在这一节中,我们将学习 使用OpenCV查找图像的傅立叶变换 利用Numpy中的FFT功能 傅立叶变换的一些应用 我们将学到以下函数:cv2.dft(),cv2.idft()等 理论 傅立叶变换用于分析各种滤波器的频率特性。对于图像,可以使用2D离散傅里叶变换(DFT)来查找频域。被称为快速傅立叶变换(FFT)的快速算法被用于DFT的计算。有关这些的细节可以在任何图像处理或信号处理的教科书中

  • 傅里叶 - 莫茨金消元法的英文名:Fourier-Motzkin Elimination,简称 FME 算法,它是一种用于从线性不等式中消除变量的数学方法。 它的命名源自于在 1827 年和 1936 年独立发现该算法的 Joseph Fourier 和 Theodore Motzkin 的姓氏。 1. 展示 从线性不等式中消除一组变量,是指通过将关系式中的若干个元素有限次地变换,消去其中的某些元

  • 从头到尾彻底理解傅里叶变换算法、下 推荐阅读:The Scientist and Engineer’s Guide to Digital Signal Processing,By Steven W. Smith, Ph.D。此书地址:http://www.dspguide.com/pdfbook.htm。 前期回顾,在上一篇里,我们讲了傅立叶变换的由来、和实数形式离散傅立叶变换(Real DFT)

  • 从头到尾彻底理解傅里叶变换算法、上 I、本文中阐述离散傅里叶变换方法,是根据此书:The Scientist and Engineer’s Guide to Digital Signal Processing,By Steven W. Smith, Ph.D.而翻译而成的,此书地址:http://www.dspguide.com/pdfbook.htm。 II、同时,有相当一部分内容编辑整理自dz