当前位置: 首页 > 编程笔记 >

Python数据可视化编程通过Matplotlib创建散点图代码示例

吴胜
2023-03-14
本文向大家介绍Python数据可视化编程通过Matplotlib创建散点图代码示例,包括了Python数据可视化编程通过Matplotlib创建散点图代码示例的使用技巧和注意事项,需要的朋友参考一下

Matplotlib简述:

Matplotlib是一个用于创建出高质量图表的桌面绘图包(主要是2D方面)。该项目是由JohnHunter于2002年启动的,其目的是为Python构建一个MATLAB式的绘图接口。如果结合PythonIDE使用比如PyCharm,matplotlib还具有诸如缩放和平移等交互功能。它不仅支持各种操作系统上许多不同的GUI后端,而且还能将图片导出为各种常见的矢量(vector)和光栅(raster)图:PDF、SVG、JPG、PNG、BMP、GIF等。此外,matplotlib还有许多插件工具集,如用于3D图形的mplot3d以及用于地图和投影的basemap。

准备数据:从文本文件中解析数据

本文使用的数据主要包含以下三种特征:每年获得的飞行常客里程数,玩视频游戏所耗时间百分比,每周消费的冰淇淋公升数。其中分类结果作为文件的第四列,并且只有3、2、1三种分类值。

飞行里程数  游戏耗时百分比  冰淇淋公升数  分类结果
 40920  8.326976  0.953952  3
 14488  7.153469  1.673904  
 26052  1.441871  0.805124  1
......  ......  ......  ......

上述特征数据的格式经过file2matrix函数解析处理之后,可输出为矩阵和类标签向量。

将文本记录转换为Numpy的解析程序:

使用file2matrix读取文件数据,必须确保待解析文件存储在当前的工作目录中。导入数据之后,简单检查一下数据格式:

分析数据:使用Matplotlib创建散点图

编辑kNN.py文件,引入matplotlib,调用matplotlib的scatter绘制散点图。

import matplotlib
import matplotlib.pyplot as plt
def file2matrix(filename):
......
return returnMat,classLabelVector
datingDataMat,datingLabels = file2matrix('datingTestSet2.txt')
fig = plt.figure()
ax = fig.add_subpot(111)
ax.scatter(datingDataMat[:,1],datingDataMat[:,2])
plt.show()

散点图使用datingDataMat矩阵的第二、第三列数据,分别表示特征值“玩视频游戏所耗时间百分比”和“每周消费的冰淇淋公升数”。

上图由于没有使用样本分类的特征值,很难看到任何有用的数据模式信息。为了更好理解数据信息,Matplotlib库提供的scatter函数支持个性化标记散点图上的点。调用scatter函数使用下列参数:

ax.scatter(datingDataMat[:,1],datingDataMat[:,2],15.0*array(datingLabels),15.0*array(datingLabels))
plt.show()

上图利用datingLabels存储的类标签属性,在散点图上绘制了色彩不等、尺寸不同的点。因而基本上可以从图中看到数据点所属三个样本分类的区域轮廓。为了得到更好的效果,采用datingDataMat矩阵的属性列1和2展示数据,并以红色的'*'表示类标签1、蓝色的'o'表示表示类标签2、绿色的'+'表示类标签3,修改参数如下:

import numpy as np
......
datingLabels = array(datingLabels)
idx_1 = np.where(datingLabels==1)
p1 = ax.scatter(datingDataMat[idx_1,0],datingDataMat[idx_1:,1],market = '*',color = 'r',label='1',s=20
idx_2 = np.where(datingLabels==2)
p2 = ax.scatter(datingDataMat[idx_2,0],datingDataMat[idx_2:,1],market = 'o',color ='b',label='1',s=10
idx_3 = np.where(datingLabels==3)
p3 = ax.scatter(datingDataMat[idx_3,0],datingDataMat[idx_3:,1],market = '+',color ='g',label='1',s=30
plt.legend(loc = 'upper right')
plt.show()

总结

本文简单介绍了Matplotlib,并以实例分析了如何使用Matplotlib库图形化展示数据,最后通过修改matplotlib的scatter函数参数使得散点图的分类区域更加清晰。

希望对大家有所帮助。如有不足之处,欢迎留言指出。感谢朋友们对本站的支持!

 类似资料:
  • 这是一个非常特殊的绘图请求,但我有数据要以非常特殊的方式查看。情况如下: 1) 我拥有的数据分为25个数据箱,每个数据箱包含不同数量的数据点。仓位值越大,粗略地说,仓位中的数据点数量就越少(这只是数据处理的结果)。 2)我可以访问bin值。 我可以在matplotlib中轻松生成“errorbar”类型的绘图(y轴从半径缩放到以下度数): 但是,对于我想研究的内容来说,这并不是特别有见地。我真的很

  • 本文向大家介绍python+matplotlib绘制饼图散点图实例代码,包括了python+matplotlib绘制饼图散点图实例代码的使用技巧和注意事项,需要的朋友参考一下 本文是从matplotlib官网上摘录下来的一个实例,实现的功能是Python+matplotlib绘制自定义饼图作为散点图的标记,具体如下。 首先看下演示效果 实例代码: 总结 以上就是本文关于python+matplot

  • 散点图用于在水平轴和垂直轴上绘制数据点,它表示了因变量随自变量变化的趋势。通俗地讲,它反映的是一个变量受另一个变量的影响程度。 散点图将序列显示为一组点,其中每个散点值都由该点在图表中的坐标位置表示。对于不同类别的点,则由图表中不同形状或颜色的标记符表示。同时,您也可以设置标记符的颜色或大小。 下面示例,绘制了学生考试成绩的散点图,其中蓝色代表男孩成绩,红色表示女孩的成绩。 代码执行后,输出结果如

  • 本文向大家介绍matplotlib 散点图,包括了matplotlib 散点图的使用技巧和注意事项,需要的朋友参考一下 示例 一个简单的散点图 带有标记点的散点图            

  • 要创建可视化视图: 点击左侧导航栏的 Visualize 。 点击 Create new visualization 按钮或 + 按钮。 选择视图类型: 基础图形 Line, Area and Bar charts 在X/Y图中比较两个不同的序列。 Heat maps 使用矩阵的渐变单元格. Pie chart 显示每个来源的占比。 数据 Data table 显示一个组合聚合的原始数据。 Met

  • 问题内容: 我有两个列表,日期和值。我想使用matplotlib绘制它们。以下创建了我的数据的散点图。 创建一个折线图。 但是我真正想要的是一个散点图,其中的点由一条线连接。 类似于R: ,这使我得到了点的散点图,并用连接点的线覆盖了点。 我该如何在python中做到这一点? 问题答案: 我认为@Evert有正确的答案: 几乎与 或您喜欢的任何 线型 。