一.BF算法
BF算法是普通的模式匹配算法,BF算法的思想就是将目标串S的第一个字符与模式串P的第一个字符进行匹配,若相等,则继续比较S的第二个字符和P的第二个字符;若不相等,则比较S的第二个字符和P的第一个字符,依次比较下去,直到得出最后的匹配结果。
举例说明:
S: ababcababa P: ababa BF算法匹配的步骤如下 i=0 i=1 i=2 i=3 i=4 第一趟:ababcababa 第二趟:ababcababa 第三趟:ababcababa 第四趟:ababcababa 第五趟:ababcababa ababa ababa ababa ababa ababa j=0 j=1 j=2 j=3 j=4(i和j回溯) i=1 i=2 i=3 i=4 i=3 第六趟:ababcababa 第七趟:ababcababa 第八趟:ababcababa 第九趟:ababcababa 第十趟:ababcababa ababa ababa ababa ababa ababa j=0 j=0 j=1 j=2(i和j回溯) j=0 i=4 i=5 i=6 i=7 i=8 第十一趟:ababcababa 第十二趟:ababcababa 第十三趟:ababcababa 第十四趟:ababcababa 第十五趟:ababcababa ababa ababa ababa ababa ababa j=0 j=0 j=1 j=2 j=3 i=9 第十六趟:ababcababa ababa j=4(匹配成功)
代码实现:
int BFMatch(char *s,char *p) { int i,j; i=0; while(i<strlen(s)) { j=0; while(s[i]==p[j]&&j<strlen(p)) { i++; j++; } if(j==strlen(p)) return i-strlen(p); i=i-j+1; //指针i回溯 } return -1; }
其实在上面的匹配过程中,有很多比较是多余的。在第五趟匹配失败的时候,在第六趟,i可以保持不变,j值为2。因为在前面匹配的过程中,对于串S,已知s0s1s2s3=p0p1p2p3,又因为p0!=p1!,所以第六趟的匹配是多余的。又由于p0==p2,p1==p3,所以第七趟和第八趟的匹配也是多余的。在KMP算法中就省略了这些多余的匹配。
二.KMP算法
KMP算法之所以叫做KMP算法是因为这个算法是由三个人共同提出来的,就取三个人名字的首字母作为该算法的名字。其实KMP算法与BF算法的区别就在于KMP算法巧妙的消除了指针i的回溯问题,只需确定下次匹配j的位置即可,使得问题的复杂度由O(mn)下降到O(m+n)。
在KMP算法中,为了确定在匹配不成功时,下次匹配时j的位置,引入了next[]数组,next[j]的值表示P[0...j-1]中最长后缀的长度等于相同字符序列的前缀。
对于next[]数组的定义如下:
1) next[j] = -1 j = 0
2) next[j] = max(k): 0<k<j P[0...k-1]=P[j-k,j-1]
3) next[j] = 0 其他
如:
P a b a b a
j 0 1 2 3 4
next -1 0 0 1 2
即next[j]=k>0时,表示P[0...k-1]=P[j-k,j-1]
因此KMP算法的思想就是:在匹配过程称,若发生不匹配的情况,如果next[j]>=0,则目标串的指针i不变,将模式串的指针j移动到next[j]的位置继续进行匹配;若next[j]=-1,则将i右移1位,并将j置0,继续进行比较。
代码实现如下:
int KMPMatch(char *s,char *p) { int next[100]; int i,j; i=0; j=0; getNext(p,next); while(i<strlen(s)) { if(j==-1||s[i]==p[j]) { i++; j++; } else { j=next[j]; //消除了指针i的回溯 } if(j==strlen(p)) return i-strlen(p); } return -1; }
因此KMP算法的关键在于求算next[]数组的值,即求算模式串每个位置处的最长后缀与前缀相同的长度, 而求算next[]数组的值有两种思路,第一种思路是用递推的思想去求算,还有一种就是直接去求解。
1.按照递推的思想:
根据定义next[0]=-1,假设next[j]=k, 即P[0...k-1]==P[j-k,j-1]
1)若P[j]==P[k],则有P[0..k]==P[j-k,j],很显然,next[j+1]=next[j]+1=k+1;
2)若P[j]!=P[k],则可以把其看做模式匹配的问题,即匹配失败的时候,k值如何移动,显然k=next[k]。
因此可以这样去实现:
void getNext(char *p,int *next) { int j,k; next[0]=-1; j=0; k=-1; while(j<strlen(p)-1) { if(k==-1||p[j]==p[k]) //匹配的情况下,p[j]==p[k] { j++; k++; next[j]=k; } else //p[j]!=p[k] k=next[k]; } }
2.直接求解方法
void getNext(char *p,int *next) { int i,j,temp; for(i=0;i<strlen(p);i++) { if(i==0) { next[i]=-1; //next[0]=-1 } else if(i==1) { next[i]=0; //next[1]=0 } else { temp=i-1; for(j=temp;j>0;j--) { if(equals(p,i,j)) { next[i]=j; //找到最大的k值 break; } } if(j==0) next[i]=0; } } } bool equals(char *p,int i,int j) //判断p[0...j-1]与p[i-j...i-1]是否相等 { int k=0; int s=i-j; for(;k<=j-1&&s<=i-1;k++,s++) { if(p[k]!=p[s]) return false; } return true; }
主要内容:BF算法原理,BF算法实现,BF算法时间复杂度,总结串的模式匹配算法,通俗地理解,是一种用来判断两个串之间是否具有"主串与子串"关系的算法。 主串与子串:如果串 A(如 "shujujiegou")中包含有串 B(如 "ju"),则称串 A 为主串,串 B 为子串。主串与子串之间的关系可简单理解为一个串 "包含" 另一个串的关系。 实现串的模式匹配的算法主要有以下两种: 普通的模式匹配算法; 快速模式匹配算法; 本节,先来学习 普通模式匹配(BF)
串的模式匹配 给定两个由英文字母组成的字符串 String 和 Pattern,要求找到 Pattern 在 String 中第一次出现的位置,并将此位置后的 String 的子串输出。如果找不到,则输出“Not Found”。 本题旨在测试各种不同的匹配算法在各种数据情况下的表现。各组测试数据特点如下: 数据0:小规模字符串,测试基本正确性; 数据1:随机数据,String 长度为 105,Pa
本文向大家介绍Python字符串匹配算法KMP实例,包括了Python字符串匹配算法KMP实例的使用技巧和注意事项,需要的朋友参考一下 本文实例讲述了Python字符串匹配算法KMP。分享给大家供大家参考。具体如下: 希望本文所述对大家的Python程序设计有所帮助。
本文向大家介绍Python实现字符串匹配的KMP算法,包括了Python实现字符串匹配的KMP算法的使用技巧和注意事项,需要的朋友参考一下 kmp算法 KMP算法是一种改进的字符串匹配算法,由D.E.Knuth,J.H.Morris和V.R.Pratt同时发现,因此人们称它为克努特——莫里斯——普拉特操作(简称KMP算法)。KMP算法的关键是利用匹配失败后的信息,尽量减少模式串与主串的匹配次数以达
本文向大家介绍C语言实现字符串匹配KMP算法,包括了C语言实现字符串匹配KMP算法的使用技巧和注意事项,需要的朋友参考一下 字符串匹配是计算机的基本任务之一。 举例来说,有一个字符串"BBC ABCDAB ABCDABCDABDE",我想知道,里面是否包含另一个字符串"ABCDABD"? 下面的的KMP算法的解释步骤 1. 首先,字符串"BBC ABCDAB ABCDABCDABDE"的第一个字符
本文向大家介绍KMP 算法实例详解,包括了KMP 算法实例详解的使用技巧和注意事项,需要的朋友参考一下 KMP 算法实例详解 KMP算法,是由Knuth,Morris,Pratt共同提出的模式匹配算法,其对于任何模式和目标序列,都可以在线性时间内完成匹配查找,而不会发生退化,是一个非常优秀的模式匹配算法。 分析:KMP模板题、KMP的关键是求出next的值、先预处理出next的值、然后一遍扫过、复