当前位置: 首页 > 编程笔记 >

pytorch常见的Tensor类型详解

罗翰
2023-03-14
本文向大家介绍pytorch常见的Tensor类型详解,包括了pytorch常见的Tensor类型详解的使用技巧和注意事项,需要的朋友参考一下

Tensor有不同的数据类型,每种类型分别有对应CPU和GPU版本(HalfTensor除外)。默认的Tensor是FloatTensor,可通过torch.set_default_tensor_type修改默认tensor类型(如果默认类型为GPU tensor,则所有操作都将在GPU上进行)。

Tensor的类型对分析内存占用很有帮助,例如,一个size为(1000,1000,1000)的FloatTensor,它有1000*1000*1000=10^9个元素,每一个元素占用32bit/8=4Byte内存,所以共占用大约4GB内存/显存。HalfTensor是专为GPU版本设计的,同样的元素个数,显存占用只有HalfTensor的一半,所以可以极大缓解GPU显存不足的问题,但是由于HalfTensor所能表示的数值大小和精度有限,所以可能出现溢出等问题。

数据类型 CPU Tensor GPU Tensor
32 bit 浮点 torch.FloatTensor torch.cuda.FloatTensor
64 bit 浮点 torch.DoubleTensor torch.cuda.DoubleTensor
16 bit 半精度浮点 N/A torch.cuda.HalfTensor
8 bit 无符号整形(0~255) torch.ByteTensor torch.cuda.ByteTensor
8 bit 有符号整形(-128~127) torch.CharTensor torch.cuda.CharTensor
16 bit 有符号整形 torch.ShortTensor torch.cuda.ShortTensor
32 bit 有符号整形 torch.IntTensor torch.cuda.IntTensor
64 bit 有符号整形 torch.LongTensor torch.cuda LongTensor

各数据类型之间可以互相转换,type(new_type)是通用的做法,同时还有float、long、half等快捷方法。CPU tensor和GPU tensor之间的互换是通过tensor.cudatensor.cpu的方法实现。

如:

#设置默认tensor,注意参数是字符串
torch.set_default_tensor_type('torch.IntTensor')
 
a=torch.Tensor(2,3)
print(a)  #a现在是IntTensor

以上这篇pytorch常见的Tensor类型详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持小牛知识库。

 类似资料:
  • 本文向大家介绍详解PyTorch中Tensor的高阶操作,包括了详解PyTorch中Tensor的高阶操作的使用技巧和注意事项,需要的朋友参考一下 条件选取:torch.where(condition, x, y) → Tensor 返回从 x 或 y 中选择元素的张量,取决于 condition 操作定义: 举个例子: 把张量中的每个数据都代入条件中,如果其大于 0 就得出 a,其它情况就得出

  • Threejs虚拟光源是对自然界光照的模拟,threejs搭建虚拟场景的时候,为了更好的渲染场景,往往需要设置不同的光源,设置不同的光照强度,就像摄影师给你拍照要设置各种辅助灯光一样。 环境光AmbientLight 环境光是没有特定方向的光源,主要是均匀整体改变Threejs物体表面的明暗效果,这一点和具有方向的光源不同,比如点光源可以让物体表面不同区域明暗程度不同。 //环境光:环境光颜色RG

  • 本文向大家介绍PyTorch中Tensor的维度变换实现,包括了PyTorch中Tensor的维度变换实现的使用技巧和注意事项,需要的朋友参考一下 对于 PyTorch 的基本数据对象 Tensor (张量),在处理问题时,需要经常改变数据的维度,以便于后期的计算和进一步处理,本文旨在列举一些维度变换的方法并举例,方便大家查看。 维度查看:torch.Tensor.size() 查看当前 tens

  • 本文向大家介绍Pytorch Tensor的索引与切片例子,包括了Pytorch Tensor的索引与切片例子的使用技巧和注意事项,需要的朋友参考一下 1. Pytorch风格的索引 根据Tensor的shape,从前往后索引,依次在每个维度上做索引。 示例代码: 上述代码创建了一个shape=[4, 3, 28, 28]的Tensor,我们可以理解为4张图片,每张图片有3个通道,每个通道是28x

  • 本文向大家介绍pytorch 常用线性函数详解,包括了pytorch 常用线性函数详解的使用技巧和注意事项,需要的朋友参考一下 Pytorch的线性函数主要封装了Blas和Lapack,其用法和接口都与之类似。 常用的线性函数如下: 函数 功能 trace 对角线元素之和(矩阵的迹) diag 对角线元素 triu/tril 矩阵的上三角/下三角,可指定偏移量 mm/bmm 矩阵乘法,batch的

  • 本文向大家介绍PyTorch之图像和Tensor填充的实例,包括了PyTorch之图像和Tensor填充的实例的使用技巧和注意事项,需要的朋友参考一下 在PyTorch中可以对图像和Tensor进行填充,如常量值填充,镜像填充和复制填充等。在图像预处理阶段设置图像边界填充的方式如下: 对Tensor进行填充的方式如下: 这里需要注意一点的是,transforms.Pad只能对PIL图像格式进行填充