当前位置: 首页 > 编程笔记 >

PyTorch之图像和Tensor填充的实例

阴英武
2023-03-14
本文向大家介绍PyTorch之图像和Tensor填充的实例,包括了PyTorch之图像和Tensor填充的实例的使用技巧和注意事项,需要的朋友参考一下

在PyTorch中可以对图像和Tensor进行填充,如常量值填充,镜像填充和复制填充等。在图像预处理阶段设置图像边界填充的方式如下:

import vision.torchvision.transforms as transforms
 
img_to_pad = transforms.Compose([
    transforms.Pad(padding=2, padding_mode='symmetric'),
    transforms.ToTensor(),
   ])

对Tensor进行填充的方式如下:

import torch.nn.functional as F
 
feature = feature.unsqueeze(0).unsqueeze(0)
avg_feature = F.pad(feature, pad = [1, 1, 1, 1], mode='replicate')

这里需要注意一点的是,transforms.Pad只能对PIL图像格式进行填充,而F.pad可以对Tensor进行填充,目前F.pad不支持对2D Tensor进行填充,可以通过unsqueeze扩展为4D Tensor进行填充。

F.pad的部分源码如下:

@torch._jit_internal.weak_script
def pad(input, pad, mode='constant', value=0):
 # type: (Tensor, List[int], str, float) -> Tensor
 r"""Pads tensor.
 Pading size:
  The number of dimensions to pad is :math:`\left\lfloor\frac{\text{len(pad)}}{2}\right\rfloor`
  and the dimensions that get padded begins with the last dimension and moves forward.
  For example, to pad the last dimension of the input tensor, then `pad` has form
  `(padLeft, padRight)`; to pad the last 2 dimensions of the input tensor, then use
  `(padLeft, padRight, padTop, padBottom)`; to pad the last 3 dimensions, use
  `(padLeft, padRight, padTop, padBottom, padFront, padBack)`.
 Padding mode:
  See :class:`torch.nn.ConstantPad2d`, :class:`torch.nn.ReflectionPad2d`, and
  :class:`torch.nn.ReplicationPad2d` for concrete examples on how each of the
  padding modes works. Constant padding is implemented for arbitrary dimensions.
  Replicate padding is implemented for padding the last 3 dimensions of 5D input
  tensor, or the last 2 dimensions of 4D input tensor, or the last dimension of
  3D input tensor. Reflect padding is only implemented for padding the last 2
  dimensions of 4D input tensor, or the last dimension of 3D input tensor.
 .. include:: cuda_deterministic_backward.rst
 Args:
  input (Tensor): `Nd` tensor
  pad (tuple): m-elem tuple, where :math:`\frac{m}{2} \leq` input dimensions and :math:`m` is even.
  mode: 'constant', 'reflect' or 'replicate'. Default: 'constant'
  value: fill value for 'constant' padding. Default: 0
 Examples::
  >>> t4d = torch.empty(3, 3, 4, 2)
  >>> p1d = (1, 1) # pad last dim by 1 on each side
  >>> out = F.pad(t4d, p1d, "constant", 0) # effectively zero padding
  >>> print(out.data.size())
  torch.Size([3, 3, 4, 4])
  >>> p2d = (1, 1, 2, 2) # pad last dim by (1, 1) and 2nd to last by (2, 2)
  >>> out = F.pad(t4d, p2d, "constant", 0)
  >>> print(out.data.size())
  torch.Size([3, 3, 8, 4])
  >>> t4d = torch.empty(3, 3, 4, 2)
  >>> p3d = (0, 1, 2, 1, 3, 3) # pad by (0, 1), (2, 1), and (3, 3)
  >>> out = F.pad(t4d, p3d, "constant", 0)
  >>> print(out.data.size())
  torch.Size([3, 9, 7, 3])
 """
 assert len(pad) % 2 == 0, 'Padding length must be divisible by 2'
 assert len(pad) // 2 <= input.dim(), 'Padding length too large'
 if mode == 'constant':
  ret = _VF.constant_pad_nd(input, pad, value)
 else:
  assert value == 0, 'Padding mode "{}"" doesn\'t take in value argument'.format(mode)
  if input.dim() == 3:
   assert len(pad) == 2, '3D tensors expect 2 values for padding'
   if mode == 'reflect':
    ret = torch._C._nn.reflection_pad1d(input, pad)
   elif mode == 'replicate':
    ret = torch._C._nn.replication_pad1d(input, pad)
   else:
    ret = input # TODO: remove this when jit raise supports control flow
    raise NotImplementedError
 
  elif input.dim() == 4:
   assert len(pad) == 4, '4D tensors expect 4 values for padding'
   if mode == 'reflect':
    ret = torch._C._nn.reflection_pad2d(input, pad)
   elif mode == 'replicate':
    ret = torch._C._nn.replication_pad2d(input, pad)
   else:
    ret = input # TODO: remove this when jit raise supports control flow
    raise NotImplementedError
 
  elif input.dim() == 5:
   assert len(pad) == 6, '5D tensors expect 6 values for padding'
   if mode == 'reflect':
    ret = input # TODO: remove this when jit raise supports control flow
    raise NotImplementedError
   elif mode == 'replicate':
    ret = torch._C._nn.replication_pad3d(input, pad)
   else:
    ret = input # TODO: remove this when jit raise supports control flow
    raise NotImplementedError
  else:
   ret = input # TODO: remove this when jit raise supports control flow
   raise NotImplementedError("Only 3D, 4D, 5D padding with non-constant padding are supported for now")
 return ret

以上这篇PyTorch之图像和Tensor填充的实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持小牛知识库。

 类似资料:
  • 本文向大家介绍Android图像处理之泛洪填充算法,包括了Android图像处理之泛洪填充算法的使用技巧和注意事项,需要的朋友参考一下 泛洪填充算法(Flood Fill Algorithm) 泛洪填充算法又称洪水填充算法是在很多图形绘制软件中常用的填充算法,最熟悉不过就是windows paint的油漆桶功能。算法的原理很简单,就是从一个点开始附近像素点,填充成新的颜色,直到封闭区域内的所有像素

  • 本文向大家介绍PyTorch中Tensor的维度变换实现,包括了PyTorch中Tensor的维度变换实现的使用技巧和注意事项,需要的朋友参考一下 对于 PyTorch 的基本数据对象 Tensor (张量),在处理问题时,需要经常改变数据的维度,以便于后期的计算和进一步处理,本文旨在列举一些维度变换的方法并举例,方便大家查看。 维度查看:torch.Tensor.size() 查看当前 tens

  • 本文向大家介绍洪水填充和边界填充算法之间的区别,包括了洪水填充和边界填充算法之间的区别的使用技巧和注意事项,需要的朋友参考一下 在这篇文章中,我们将了解洪水填充算法和边界填充算法之间的区别。它们是区域填充算法,可以根据随机像素是否具有该区域的原始颜色来区分它们。 洪水填充算法 它也被称为种子填充算法。 它针对多维数组计算连接到给定节点的面积。 它通过填充或重新着色内部包含特定颜色的特定区域并因此给

  • 我一直在使用View Pager的图片幻灯片,但是我无法使View Pager内部的图像视图填充View Pager内部水平和垂直的完整空间。知道怎么做吗? 我在我的页面适配器中尝试过这个 但还是没有运气:( 我的布局 null 我的PageAdapter

  • 本文向大家介绍在PyTorch中Tensor的查找和筛选例子,包括了在PyTorch中Tensor的查找和筛选例子的使用技巧和注意事项,需要的朋友参考一下 本文源码基于版本1.0,交互界面基于0.4.1 import torch 按照指定轴上的坐标进行过滤 index_select() 沿着某tensor的一个轴dim筛选若干个坐标 where() 用于将两个broadcastable的tenso

  • 问题内容: 是否有可能用图像 填充 div,使得至少一个图像尺寸为100%,另一个尺寸与div相比更宽或相等,同时还要考虑图像的长宽比。 一个示例可以使用这些类,如下所示: 我正在寻找一种纯HTML + CSS解决方案,该解决方案适用于响应矩形(不一定是正方形)的div。由于这个特殊原因,Javascript会很痛苦,因为需要确定每次调整大小时宽度或高度是否应为100%。服务器端甚至都不是一个选择