当前位置: 首页 > 编程笔记 >

关于Pytorch的MLP模块实现方式

彭建业
2023-03-14
本文向大家介绍关于Pytorch的MLP模块实现方式,包括了关于Pytorch的MLP模块实现方式的使用技巧和注意事项,需要的朋友参考一下

MLP分类效果一般好于线性分类器,即将特征输入MLP中再经过softmax来进行分类。

具体实现为将原先线性分类模块:

self.classifier = nn.Linear(config.hidden_size, num_labels)

替换为:

self.classifier = MLP(config.hidden_size, num_labels)

并且添加MLP模块:

  class MLP(nn.Module):
    def __init__(self, input_size, common_size):
      super(MLP, self).__init__()
      self.linear = nn.Sequential(
        nn.Linear(input_size, input_size // 2),
        nn.ReLU(inplace=True),
        nn.Linear(input_size // 2, input_size // 4),
        nn.ReLU(inplace=True),
        nn.Linear(input_size // 4, common_size)
      )
 
    def forward(self, x):
      out = self.linear(x)
      return out

看一下模块结构:

mlp = MLP(1000,3)
print(mlp)

以上这篇关于Pytorch的MLP模块实现方式就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持小牛知识库。

 类似资料:
  • 本文向大家介绍关于ResNeXt网络的pytorch实现,包括了关于ResNeXt网络的pytorch实现的使用技巧和注意事项,需要的朋友参考一下 此处需要pip install pretrainedmodels 以上这篇关于ResNeXt网络的pytorch实现就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持呐喊教程。

  • 本文向大家介绍Pytorch实现GoogLeNet的方法,包括了Pytorch实现GoogLeNet的方法的使用技巧和注意事项,需要的朋友参考一下 GoogLeNet也叫InceptionNet,在2014年被提出,如今已到V4版本。GoogleNet比VGGNet具有更深的网络结构,一共有22层,但是参数比AlexNet要少12倍,但是计算量是AlexNet的4倍,原因就是它采用很有效的Ince

  • 本文向大家介绍关于ZeroMQ 三种模式python3实现方式,包括了关于ZeroMQ 三种模式python3实现方式的使用技巧和注意事项,需要的朋友参考一下 ZeroMQ是一个消息队列网络库,实现网络常用技术封装。在C/S中实现了三种模式,这段时间用python简单实现了一下,感觉python虽然灵活。但是数据处理不如C++自由灵活。 Request-Reply模式: 客户端在请求后,服务端必须

  • 本文向大家介绍dpn网络的pytorch实现方式,包括了dpn网络的pytorch实现方式的使用技巧和注意事项,需要的朋友参考一下 我就废话不多说了,直接上代码吧! 以上这篇dpn网络的pytorch实现方式就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持呐喊教程。

  • 本文向大家介绍pytorch实现线性拟合方式,包括了pytorch实现线性拟合方式的使用技巧和注意事项,需要的朋友参考一下 一维线性拟合 数据为y=4x+5加上噪音 结果: 多维: 以上这篇pytorch实现线性拟合方式就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持呐喊教程。

  • 本文向大家介绍pytorch实现focal loss的两种方式小结,包括了pytorch实现focal loss的两种方式小结的使用技巧和注意事项,需要的朋友参考一下 我就废话不多说了,直接上代码吧! 以上这篇pytorch实现focal loss的两种方式小结就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持呐喊教程。