Java实现LRU缓存的实例详解
1.Cache
Cache对于代码系统的加速与优化具有极大的作用,对于码农来说是一个很熟悉的概念。可以说,你在内存中new 了一个一段空间(比方说数组,list)存放一些冗余的结果数据,并利用这些数据完成了以空间换时间的优化目的,你就已经使用了cache。
有服务级的缓存框架,如memcache,Redis等。其实,很多时候,我们在自己同一个服务内,或者单个进程内也需要缓存,例如,lucene就对搜索做了缓存,而无须依赖外界。那么,我们如何实现我们自己的缓存?还要带自动失效的,最好还是LRU(Least Recently Used)。
当你思考怎么去实现,你可能会想得很远。为了LRU,需要把刚使用的数据存入栈,或者纪录每个数据最近使用的时间,再来的定时扫描失效的线程….其实,Java本身就已经为我们提供了LRU Cache很好的实现,即LinkedHashMap。
2.LinkedHashMap分析
很多没有去细究过其内部实现的人,只是将其当作一个普通的hashMap来对待。LinkedHashMap是一个双向链表,加上HashTable的实现。表现出来与普通HashMap的一个区别就是LinkedHashMap会记录存入其中的数据的顺序,并能按顺取出。
为了实现,一个hash表,自然应该先申请在一片连续的内存空间上。当需要存入数据的时候,根据相应的hash值存入。而LinkedHashMap在这个基础上,为每个entry设置了before与after属性,形了一个双向链表,记录了他们put进入的前后顺序。
不仅如此,每当通过get来获得某个元素后,get方法内部,会在最后通过afterNodeAccess方法来调整链表的指向:
void afterNodeAccess(Node<K,V> e) { // move node to last LinkedHashMap.Entry<K,V> last; if (accessOrder && (last = tail) != e) { LinkedHashMap.Entry<K,V> p = (LinkedHashMap.Entry<K,V>)e, b = p.before, a = p.after; p.after = null; if (b == null) head = a; else b.after = a; if (a != null) a.before = b; else last = b; if (last == null) head = p; else { p.before = last; last.after = p; } tail = p; ++modCount; } }
上述代码将Node e移至了双向链表的未尾。而在方法afterNodeInsertion中,只要满足条件,便移除最老的数据,即链表的head。
void afterNodeInsertion(boolean evict) { // possibly remove eldest LinkedHashMap.Entry<K,V> first; if (evict && (first = head) != null && removeEldestEntry(first)) { K key = first.key; removeNode(hash(key), key, null, false, true); } }
可见,当你为LinkedHashMap设置有限空间的时候,自然便完成了LRU Cache的效果。当然还有一个前提,你必须重写一个方法removeEldestEntry,返回true。表示空间已满时,删除最老的。
@Override public boolean removeEldestEntry(Map.Entry<K, V> eldest){ return size()>capacity; }
3.线程安全的LRU Cache
如此,我们就获得了一个LRU缓存利器,满足了我们大多场景下的需求。但还有一个问题,它不是线程安全的。在多线程的情况下,你有可能需要对某些Cache做同步处理。这时候,你再找,可以看到java有ConcurrentHashMap的实现,但并不存在ConcurrentLinkedHashMap这样的类。
当然这个问题也不大,我们可以对再有的LinkedHashMap,再作封装,对get,put, 之类的方法加上同步操作。
目前,我们所用的处理,是直接采和google提供的guava包,这里面就提供了我们想要的ConcurrentLinkedHashMap。这样就可以很方便地实现一个线程安全。具体代码如下:
import java.util.Set; import com.googlecode.concurrentlinkedhashmap.Weighers; import com.googlecode.concurrentlinkedhashmap.ConcurrentLinkedHashMap; public class ConcurrentLRUCache<K, V> { public static final int DEFAULT_CONCURENCY_LEVEL = 32; private final ConcurrentLinkedHashMap<K, V> map; public ConcurrentLRUCache(int capacity) { this(capacity, DEFAULT_CONCURENCY_LEVEL); } public ConcurrentLRUCache(int capacity, int concurrency) { map = new ConcurrentLinkedHashMap.Builder<K, V>().weigher(Weighers.<V> singleton()) .initialCapacity(capacity).maximumWeightedCapacity(capacity) .concurrencyLevel(concurrency).build(); } public void put(K key, V value) { map.put(key, value); } public V get(K key) { V v = map.get(key); return v; } public V getInternal(K key) { return map.get(key); } public void remove(K key) { map.remove(key); } public long getCapacity() { return map.capacity(); } public void updateCapacity(int capacity) { map.setCapacity(capacity); } public int getSize() { return map.size(); } public void clear() { map.clear(); } public Set<K> getKeySet() { return map.keySet(); } }
以上就是Java实现LRU缓存的实例,如有疑问请留言或者到本站社区交流讨论,感谢阅读,希望能帮助到大家,谢谢大家对本站的支持!
本文向大家介绍详解Java实现LRU缓存,包括了详解Java实现LRU缓存的使用技巧和注意事项,需要的朋友参考一下 LRU是Least Recently Used 的缩写,翻译过来就是“最近最少使用”,LRU缓存就是使用这种原理实现,简单的说就是缓存一定量的数据,当超过设定的阈值时就把一些过期的数据删除掉,比如我们缓存10000条数据,当数据小于10000时可以随意添加,当超过10000时就需要把
问题内容: 我试图使用LinkedHashMap实现LRU缓存。在LinkedHashMap的文档(http://docs.oracle.com/javase/7/docs/api/java/util/LinkedHashMap.html)中,它表示: 请注意,如果将密钥重新插入到映射中,则插入顺序不会受到影响。 但是当我做以下推 输出是 这表明重新插入确实影响了订单。有人知道任何解释吗? 问题答
主要内容:1 LinkedHashMap的概述,2 LinkedHashMap的源码解析,2.1 主要类属性,2.2 构造器,2.4 常见API方法,2.5 大链表与迭代顺序的维护,3 LinkedHashMap与LRU缓存,3.1 afterNodeInsertion方法,3.2 removeEldestEntry方法,3.3 LRU缓存实现案例,4 LinkedHashMap的总结本文基于JDK1.8详细介绍了LinkedHashMap的底层原理,它到底是如何保证元素有序的?同时讲解了基于访
问题内容: 不要说EHCache或OSCache等。出于这个问题的目的,假设我想仅使用SDK实现自己的实现(边做边学)。考虑到缓存将在多线程环境中使用,你将使用哪些数据结构?我已经使用LinkedHashMap和Collections#synchronizedMap实现了一个,但是我很好奇是否有任何新的并发集合会更好。 更新:当我发现这个块时,我只是在阅读Yegge的最新文章: 如果你需要固定时间
本文向大家介绍Java实现简单LRU缓存机制的方法,包括了Java实现简单LRU缓存机制的方法的使用技巧和注意事项,需要的朋友参考一下 一、什么是 LRU 算法 就是一种缓存淘汰策略。 计算机的缓存容量有限,如果缓存满了就要删除一些内容,给新内容腾位置。但问题是,删除哪些内容呢?我们肯定希望删掉哪些没什么用的缓存,而把有用的数据继续留在缓存里,方便之后继续使用。 LRU是Least Recentl
本文向大家介绍Java LocalCache 本地缓存的实现实例,包括了Java LocalCache 本地缓存的实现实例的使用技巧和注意事项,需要的朋友参考一下 源码地址: GitHub 使用场景 在Java应用中,对于访问频率高,更新少的数据,通常的方案是将这类数据加入缓存中。相对从数据库中读取来说,读缓存效率会有很大提升。 在集群环境下,常用的分布式缓存有Redis、Memcached等。但