当前位置: 首页 > 编程笔记 >

C语言科学计算入门之矩阵乘法的相关计算

卢聪
2023-03-14
本文向大家介绍C语言科学计算入门之矩阵乘法的相关计算,包括了C语言科学计算入门之矩阵乘法的相关计算的使用技巧和注意事项,需要的朋友参考一下

1.矩阵相乘
矩阵相乘应满足的条件:
(1) 矩阵A的列数必须等于矩阵B的行数,矩阵A与矩阵B才能相乘;
(2) 矩阵C的行数等于矩阵A的行数,矩阵C的列数等于矩阵B的列数;
(3) 矩阵C中第i行第j列的元素等于矩阵A的第i行元素与矩阵B的第j列元素对应乘积之和,即

如:

则:

2. 常用矩阵相乘算法
    用A的第i行分别和B的第j列的各个元素相乘求和,求得C的第i行j列的元素,这种算法中,B的访问是按列进行访问的,代码如下:

void arymul(int a[4][5], int b[5][3], int c[4][3])
{
 int i, j, k;
 int temp;
 for(i = 0; i < 4; i++){
 for(j = 0; j < 3; j++){
  temp = 0;
  for(k = 0; k < 5; k++){
  temp += a[i][k] * b[k][j];
  }
  c[i][j] = temp;
  printf("%d/t", c[i][j]);
 }
 printf("%d/n");
 }
}

3. 改进的算法
    矩阵A、B、C都按行(数据的存储顺序)访问,以提高存储器访问效率,对于A的第i行中,第j列的元素分别和B的第j行的元素相乘,对于B中相同的列k在上述计算过程中求和,从而得到C第i行k列的数据,代码如下:

void arymul1(int a[4][5], int b[5][3], int c[4][3])
{
 int i, j, k;
 int temp[3] = {0};
 for(i = 0; i < 4; i++){
 for(k = 0; k < 3; k ++)
  temp[k] = 0;
 for(j = 0; j < 5; j++){//当前行的每个元素
  for(k = 0; k < 3; k++){
  temp[k] += a[i][j] * b[j][k];
  }
 }
 for(k = 0; k < 3; k++){
  c[i][k] = temp[k];
  printf("%d/t", c[i][k]);
 }
 printf("%d/n");
 }
}

这种算法很容易转到稀疏矩阵的相乘算法。

PS:斯特拉森算法的实现
斯特拉森方法,是由v.斯特拉森在1969年提出的一个方法。

我们先讨论二阶矩阵的计算方法。
对于二阶矩阵

a11 a12 b11 b12 
A = a21 a22 B = b21 b22 

先计算下面7个量(1)

x1 = (a11 + a22) * (b11 + b22); 
x2 = (a21 + a22) * b11; 
x3 = a11 * (b12 - b22); 
x4 = a22 * (b21 - b11); 
x5 = (a11 + a12) * b22; 
x6 = (a21 - a11) * (b11 + b12); 
x7 = (a12 - a22) * (b21 + b22); 

再设C = AB。根据矩阵相乘的规则,C的各元素为(2)

c11 = a11 * b11 + a12 * b21 
c12 = a11 * b12 + a12 * b22 
c21 = a21 * b11 + a22 * b21 
c22 = a21 * b12 + a22 * b22 

比较(1)(2),C的各元素可以表示为(3)

c11 = x1 + x4 - x5 + x7 
c12 = x3 + x5 
c21 = x2 + x4 
c22 = x1 + x3 - x2 + x6 

根据以上的方法,我们就可以计算4阶矩阵了,先将4阶矩阵A和B划分成四块2阶矩阵,分别利用公式计算它们的乘积,再使用(1)(3)来计算出最后结果。

ma11 ma12 mb11 mb12 
A4 = ma21 ma22 B4 = mb21 mb22 

其中

a11 a12 a13 a14 b11 b12 b13 b14 
ma11 = a21 a22 ma12 = a23 a24 mb11 = b21 b22 mb12 = b23 b24 

a31 a32 a33 a34 b31 b32 b33 b34 
ma21 = a41 a42 ma22 = a43 a44 mb21 = b41 b42 mb22 = b43 b44 

实现

// 计算2X2矩阵 
void Multiply2X2(float& fOut_11, float& fOut_12, float& fOut_21, float& fOut_22, 
float f1_11, float f1_12, float f1_21, float f1_22, 
float f2_11, float f2_12, float f2_21, float f2_22) 
{ 
const float x1((f1_11 + f1_22) * (f2_11 + f2_22)); 
const float x2((f1_21 + f1_22) * f2_11); 
const float x3(f1_11 * (f2_12 - f2_22)); 
const float x4(f1_22 * (f2_21 - f2_11)); 
const float x5((f1_11 + f1_12) * f2_22); 
const float x6((f1_21 - f1_11) * (f2_11 + f2_12)); 
const float x7((f1_12 - f1_22) * (f2_21 + f2_22)); 
fOut_11 = x1 + x4 - x5 + x7; 
fOut_12 = x3 + x5; 
fOut_21 = x2 + x4; 
fOut_22 = x1 - x2 + x3 + x6; 
} 
// 计算4X4矩阵 
void Multiply(CLAYMATRIX& mOut, const CLAYMATRIX& m1, const CLAYMATRIX& m2) 
{ 
float fTmp[7][4]; 
// (ma11 + ma22) * (mb11 + mb22) 
Multiply2X2(fTmp[0][0], fTmp[0][1], fTmp[0][2], fTmp[0][3], 
m1._11 + m1._33, m1._12 + m1._34, m1._21 + m1._43, m1._22 + m1._44, 
m2._11 + m2._33, m2._12 + m2._34, m2._21 + m2._43, m2._22 + m2._44); 
// (ma21 + ma22) * mb11 
Multiply2X2(fTmp[1][0], fTmp[1][1], fTmp[1][2], fTmp[1][3], 
m1._31 + m1._33, m1._32 + m1._34, m1._41 + m1._43, m1._42 + m1._44, 
m2._11, m2._12, m2._21, m2._22); 
// ma11 * (mb12 - mb22) 
Multiply2X2(fTmp[2][0], fTmp[2][1], fTmp[2][2], fTmp[2][3], 
m1._11, m1._12, m1._21, m1._22, 
m2._13 - m2._33, m2._14 - m2._34, m2._23 - m2._43, m2._24 - m2._44); 
// ma22 * (mb21 - mb11) 
Multiply2X2(fTmp[3][0], fTmp[3][1], fTmp[3][2], fTmp[3][3], 
m1._33, m1._34, m1._43, m1._44, 
m2._31 - m2._11, m2._32 - m2._12, m2._41 - m2._21, m2._42 - m2._22); 
// (ma11 + ma12) * mb22 
Multiply2X2(fTmp[4][0], fTmp[4][1], fTmp[4][2], fTmp[4][3], 
m1._11 + m1._13, m1._12 + m1._14, m1._21 + m1._23, m1._22 + m1._24, 
m2._33, m2._34, m2._43, m2._44); 
// (ma21 - ma11) * (mb11 + mb12) 
Multiply2X2(fTmp[5][0], fTmp[5][1], fTmp[5][2], fTmp[5][3], 
m1._31 - m1._11, m1._32 - m1._12, m1._41 - m1._21, m1._42 - m1._22, 
m2._11 + m2._13, m2._12 + m2._14, m2._21 + m2._23, m2._22 + m2._24); 
// (ma12 - ma22) * (mb21 + mb22) 
Multiply2X2(fTmp[6][0], fTmp[6][1], fTmp[6][2], fTmp[6][3], 
m1._13 - m1._33, m1._14 - m1._34, m1._23 - m1._43, m1._24 - m1._44, 
m2._31 + m2._33, m2._32 + m2._34, m2._41 + m2._43, m2._42 + m2._44); 
// 第一块 
mOut._11 = fTmp[0][0] + fTmp[3][0] - fTmp[4][0] + fTmp[6][0]; 
mOut._12 = fTmp[0][1] + fTmp[3][1] - fTmp[4][1] + fTmp[6][1]; 
mOut._21 = fTmp[0][2] + fTmp[3][2] - fTmp[4][2] + fTmp[6][2]; 
mOut._22 = fTmp[0][3] + fTmp[3][3] - fTmp[4][3] + fTmp[6][3]; 
// 第二块 
mOut._13 = fTmp[2][0] + fTmp[4][0]; 
mOut._14 = fTmp[2][1] + fTmp[4][1]; 
mOut._23 = fTmp[2][2] + fTmp[4][2]; 
mOut._24 = fTmp[2][3] + fTmp[4][3]; 
// 第三块 
mOut._31 = fTmp[1][0] + fTmp[3][0]; 
mOut._32 = fTmp[1][1] + fTmp[3][1]; 
mOut._41 = fTmp[1][2] + fTmp[3][2]; 
mOut._42 = fTmp[1][3] + fTmp[3][3]; 
// 第四块 
mOut._33 = fTmp[0][0] - fTmp[1][0] + fTmp[2][0] + fTmp[5][0]; 
mOut._34 = fTmp[0][1] - fTmp[1][1] + fTmp[2][1] + fTmp[5][1]; 
mOut._43 = fTmp[0][2] - fTmp[1][2] + fTmp[2][2] + fTmp[5][2]; 
mOut._44 = fTmp[0][3] - fTmp[1][3] + fTmp[2][3] + fTmp[5][3]; 
} 

比较
在标准的定义算法中我们需要进行n * n * n次乘法运算,新算法中我们需要进行7log2n次乘法,对于最常用的4阶矩阵:   原算法 新算法
加法次数 48 72(48次加法,24次减法)
乘法次数 64 49
需要额外空间 16 * sizeof(float) 28 * sizeof(float)
新算法要比原算法多了24次减法运算,少了15次乘法。但因为浮点乘法的运算速度要远远慢于加/减法运算,所以新算法的整体速度有所提高。

 类似资料:
  • 本文向大家介绍C语言实现两个矩阵相乘,包括了C语言实现两个矩阵相乘的使用技巧和注意事项,需要的朋友参考一下 本文实例为大家分享了C语言实现两个矩阵相乘的具体代码,供大家参考,具体内容如下 程序功能:实现两个矩阵相乘的C语言程序,并将其输出 代码如下: 运行结果: 以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持呐喊教程。

  • 本文向大家介绍Python科学计算之NumPy入门教程,包括了Python科学计算之NumPy入门教程的使用技巧和注意事项,需要的朋友参考一下 前言 NumPy是Python用于处理大型矩阵的一个速度极快的数学库。它允许你在Python中做向量和矩阵的运算,而且很多底层的函数都是用C写的,你将获得在普通Python中无法达到的运行速度。这是由于矩阵中每个元素的数据类型都是一样的,这也就减少了运算过

  • 如何计算大的皮尔逊互相关矩阵( 更新:我读了阿帕奇火花的实现 但对我来说,看起来所有的计算都发生在一个节点上,而不是真正意义上的分布式。 请在这里放一些光。我还尝试在3节点火花群集上执行它,下面是屏幕截图: 正如您从第二张图中看到的,数据在一个节点上被拉起,然后进行计算。我在这里对吗?

  • 我有一个矩阵。只有唯一的颜色以不同的权重重复它们自己。从它们中,我得选择一半,另一半必须用从第一个中最接近的元素替换。 我想到了在图像中循环,并搜索最近的颜色为当前的一个。找到后,我把一个换成另一个。 但我有3个循环、、。前两个I循环通过RGB矩阵,第三个用于循环到包含最终颜色的矩阵。这需要一些时间来计算。 可以做些什么来加快它的速度? 循环如下所示: 表示选择为最终颜色的半色。 我可以考虑一些小

  • 我想使用寄存器(逐行信息)通过向量算法创建矩阵乘法。打开外循环4次我有空洞matvec_XMM(双* a,双* x,双* y,整数n,整数磅)函数的问题,它返回了不好的结果,这是算法wchich我必须使用: 它是ma代码:

  • 如上所述,我需要用Python找到矩阵的基-2-对数。当然,我知道公式$log_a(x)=ln(x)/ln(a)$,其中ln是自然对数,但据我所知,这只适用于标量参数x(如果我错了请纠正我)。至少我还没有看到任何论据,为什么这也适用于矩阵。 那么,有人知道是否存在这样一个内置在matrix-log2函数吗? 或者:由于几年前我使用过Mathematica,所以我知道了MatrixFunction[