以var a = [4,2,6,3,1,9,5,7,8,0];为例子。
1.希尔排序。 希尔排序是在插入排序上面做的升级。是先跟距离较远的进行比较的一些方法。
function shellsort(arr){ var i,k,j,len=arr.length,gap = Math.ceil(len/2),temp; while(gap>0){ for (var k = 0; k < gap; k++) { var tagArr = []; tagArr.push(arr[k]) for (i = k+gap; i < len; i=i+gap) { temp = arr[i]; tagArr.push(temp); for (j=i-gap; j >-1; j=j-gap) { if(arr[j]>temp){ arr[j+gap] = arr[j]; }else{ break; } } arr[j+gap] = temp; } console.log(tagArr,"gap:"+gap);//输出当前进行插入排序的数组。 console.log(arr);//输出此轮排序后的数组。 } gap = parseInt(gap/2); } return arr; }
过程输出:
[4, 9] "gap:5" [4, 2, 6, 3, 1, 9, 5, 7, 8, 0] [2, 5] "gap:5" [4, 2, 6, 3, 1, 9, 5, 7, 8, 0] [6, 7] "gap:5" [4, 2, 6, 3, 1, 9, 5, 7, 8, 0] [3, 8] "gap:5" [4, 2, 6, 3, 1, 9, 5, 7, 8, 0] [1, 0] "gap:5" [4, 2, 6, 3, 0, 9, 5, 7, 8, 1] [4, 6, 0, 5, 8] "gap:2" [0, 2, 4, 3, 5, 9, 6, 7, 8, 1] [2, 3, 9, 7, 1] "gap:2" [0, 1, 4, 2, 5, 3, 6, 7, 8, 9] [0, 1, 4, 2, 5, 3, 6, 7, 8, 9] "gap:1" [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
由输出可以看到。第一轮间隔为5。依次对这些间隔的数组插入排序。
间隔为5:
[4, 9] "gap:5" [4, 2, 6, 3, 1, 9, 5, 7, 8, 0] [2, 5] "gap:5" [4, 2, 6, 3, 1, 9, 5, 7, 8, 0] [6, 7] "gap:5" [4, 2, 6, 3, 1, 9, 5, 7, 8, 0] [3, 8] "gap:5" [4, 2, 6, 3, 1, 9, 5, 7, 8, 0] [1, 0] "gap:5" [4, 2, 6, 3, 0, 9, 5, 7, 8, 1] [4, 6, 0, 5, 8] "gap:2" [0, 2, 4, 3, 5, 9, 6, 7, 8, 1] [2, 3, 9, 7, 1] "gap:2" [0, 1, 4, 2, 5, 3, 6, 7, 8, 9] [0, 1, 4, 2, 5, 3, 6, 7, 8, 9] "gap:1" [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
间隔为2:
[4, 2, 6, 3, 0, 9, 5, 7, 8, 1] 4 6 0 5 8 2 3 9 7 1
排序后:
[0, 1, 4, 2, 5, 3, 6, 7, 8, 9]
间隔为1:
排序后:
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]。
2.快速排序。把一个数组以数组中的某个值为标记。比这个值小的放到数组的左边,比这个值得大的放到数组的右边。然后再递归 对左边和右边的数组进行同样的操作。直到排序完成。通常以数组的第一个值为标记。
代码:
function quickSort(arr){ var len = arr.length,leftArr=[],rightArr=[],tag; if(len<2){ return arr; } tag = arr[0]; for(i=1;i<len;i++){ if(arr[i]<=tag){ leftArr.push(arr[i]) }else{ rightArr.push(arr[i]); } } return quickSort(leftArr).concat(tag,quickSort(rightArr)); }
3.归并排序。把一系列排好序的子序列合并成一个大的完整有序序列。从最小的单位开始合并。然后再逐步合并合并好的有序数组。最终实现归并排序。
合并两个有序数组的方法:
function subSort(arr1,arr2){ var len1 = arr1.length,len2 = arr2.length,i=0,j=0,arr3=[],bArr1 = arr1.slice(),bArr2 = arr2.slice(); while(bArr1.length!=0 || bArr2.length!=0){ if(bArr1.length == 0){ arr3 = arr3.concat(bArr2); bArr2.length = 0; }else if(bArr2.length == 0){ arr3 = arr3.concat(bArr1); bArr1.length = 0; }else{ if(bArr1[0]<=bArr2[0]){ arr3.push(bArr1[0]); bArr1.shift(); }else{ arr3.push(bArr2[0]); bArr2.shift(); } } } return arr3; }
归并排序:
function mergeSort(arr){ var len= arr.length,arrleft=[],arrright =[],gap=1,maxgap=len-1,gapArr=[],glen,n; while(gap<maxgap){ gap = Math.pow(2,n); if(gap<=maxgap){ gapArr.push(gap); } n++; } glen = gapArr.length; for (var i = 0; i < glen; i++) { gap = gapArr[i]; for (var j = 0; j < len; j=j+gap*2) { arrleft = arr.slice(j, j+gap); arrright = arr.slice(j+gap,j+gap*2); console.log("left:"+arrleft,"right:"+arrright); arr = arr.slice(0,j).concat(subSort(arrleft,arrright),arr.slice(j+gap*2)); } } return arr; }
排序[4,2,6,3,1,9,5,7,8,0]输出:
left:4 right:2 left:6 right:3 left:1 right:9 left:5 right:7 left:8 right:0 left:2,4 right:3,6 left:1,9 right:5,7 left:0,8 right: left:2,3,4,6 right:1,5,7,9 left:0,8 right: left:1,2,3,4,5,6,7,9 right:0,8
看出来从最小的单位入手。
第一轮先依次合并相邻元素:4,2; 6,3; 1,9; 5,7; 8,0
合并完成之后变成: [2,4,3,6,1,9,5,7,0,8]
第二轮以2个元素为一个单位进行合并:[2,4],[3,6]; [1,9],[5,7]; [0,8],[];
合并完成之后变成:[2,3,4,6,1,5,7,9,0,8]
第三轮以4个元素为一个单位进行合并:[2,3,4,6],[1,5,7,9]; [0,8],[]
合并完成之后变成: [1,2,3,4,5,6,7,9,0,8];
第四轮以8个元素为一个单位进行合并: [1,2,3,4,5,6,7,9],[0,8];
合并完成。 [0,1,2,3,4,5,6,7,8,9];
以上就是本文的全部内容,希望对大家的学习有所帮助。
快速排序 from typing import List def quick_sort(arr: List, left, right) -> List: """ 快速排序是对冒泡排序的改进,核心思想是找到一个中值点pivot,然后将小于等于pivot的放在pivot的左边,大于pivot的放在右边,一直递归到无法拆分pivot点。 :param arr: :re
希尔排序 这个算法在插入排序的基础上作出了很大的改善。希尔排序的核心理念与插入排序不同,它会首先比较距离较远的元素,而非相邻的元素。和简单的比较相邻元素相比,使用这种方案可以使离正确位置很远的元素更快回到适合的位置。当开始用这个算法遍历数据集时,所有元素之间的距离会不断减小,直到处理到数据集的末尾,这时算法比较的就是相邻元素了。 主要是通过遍历数组中相隔相同位置的元素去比较大小进行排列 funct
快速排序,这是一个经典的算法,本文给出几种python的写法,供参考。 特别是python能用一句话实现快速排序。 思路说明 快速排序是C.R.A.Hoare于1962年提出的一种划分交换排序。它采用了一种分治的策略,通常称其为分治法(Divide-and-ConquerMethod)。 (1) 分治法的基本思想 分治法的基本思想是:将原问题分解为若干个规模更小但结构与原问题相似的子问题。递归地解
主要内容:序列的划分方法,希尔排序算法的具体实现前面给大家介绍了 插入排序算法,通过将待排序序列中的元素逐个插入到有序的子序列中,最终使整个序列变得有序。下图所示的动画演示了插入排序的整个过程: 图 1 插入排序算法 观察动画不难发现,插入排序算法是通过比较元素大小和交换元素存储位置实现排序的,比较大小和移动元素的次数越多,算法的效率就越差。 希尔排序算法又叫 缩小增量排序算法,是一种更高效的插入排序算法。和普通的插入排序算法相比,希尔排序算法
JavaScript算法-快速排序 快速排序是处理大数据集最快的排序算法之一。它是一种分而治之的算法,通过递归的方式将数据依次分解为包含较小元素和较大元素的不同子序列。该算法不断重复这个步骤直到所有数据都是有序的。 这个算法首先要在列表中选择一个元素作为基准值(pivot)。数据排序围绕基准值进行,将列表中小于基准值的元素移到数组的底部,将大于基准值的元素移到数组的顶部。 快速排序的算法和伪代码
希尔排序,也称递减增量排序算法,是插入排序的一种更高效的改进版本。但希尔排序是非稳定排序算法。 希尔排序是基于插入排序的以下两点性质而提出改进方法的: 插入排序在对几乎已经排好序的数据操作时,效率高,即可以达到线性排序的效率; 但插入排序一般来说是低效的,因为插入排序每次只能将数据移动一位; 希尔排序的基本思想是:先将整个待排序的记录序列分割成为若干子序列分别进行直接插入排序,待整个序列中的记录“