当前位置: 首页 > 面试题库 >

优化的合并排序比快速排序更快

吕自明
2023-03-14
问题内容

[http://jsperf.com/optimized-mergesort-versus-
quicksort][1]

为什么这个半缓冲区合并排序的工作速度与quicksort一样快?

QuickSort是:

  1. 就地虽然会占用log(n)递归(堆栈空间)
  2. 缓存友好

这一半缓冲区合并排序:

  1. 使用n/2Buffer进行合并。
  2. 使用log(n)递归。
  3. 进行较少的比较。

我的问题是,在这种情况下,为什么半缓冲区合并排序与QuickSort的速度匹配?另外,我对quickSort做错了什么,这会使它变慢了吗?

function partition(a, i, j) {
    var p = i + Math.floor((j - i) / 2);
    var left = i + 1;
    var right = j;
    swap(a, i, p);
    var pivot = a[i];
    while (left <= right) {
        while (builtinLessThan(a[left], pivot)) {
            ++left;
        }
        while (builtinLessThan(pivot, a[right])) {
            --right;
        }
        if (left <= right) {
            swap(a, left, right);
            ++left;
            --right;
        }
    }
    swap(a, i, right);
    return right;
};

function quickSort(a, i, j) {
    var p = partition(a, i, j);
    if ((p) - i > j - p) {
        if (i < p - 1) {
            quickSort(a, i, p - 1);
        }
        if (p + 1 < j) {
            quickSort(a, p + 1, j);
        }
    } else {
        if (p + 1 < j) {
            quickSort(a, p + 1, j);
        } if (i < p - 1) {
            quickSort(a, i, p - 1);
        }
    }
};

问题答案:

合并排序的比较次数较少,但比快速排序的动作更多。必须调用函数进行比较会增加比较的开销,这会使快速排序变慢。示例快速排序中的所有if语句也使它变慢。如果比较和交换是内联完成的,那么如果对伪随机整数数组进行排序,则快速排序应该会更快一些。

如果在具有16个寄存器的处理器(例如64位模式的PC)上运行,则使用一堆最终在寄存器中的指针进行的4方式合并排序大约与快速排序一样快。2路合并排序平均值对每个移动的元素进行比较1,而4路合并排序平均值3对每个移动的元素进行比较,但只需要通过次数的1/2,因此基本操作的次数是相同的,但是比较起来对缓存的友好性更高,这使得4路合并排序的速度提高了约15%,与快速排序的速度差不多。

我对Java脚本不熟悉,因此我将示例转换为C ++。

使用Java脚本合并排序的转换版本,排序1600万伪随机32位整数大约需要2.4秒。下面显示的示例快速排序需要大约1.4秒,下面显示的示例自下而上合并需要大约1.6秒。如前所述,在带有16个寄存器的处理器上使用一堆指针(或索引)进行4路合并也将花费大约1.4秒。

C ++快速排序示例:

void QuickSort(int a[], int lo, int hi) {
    int i = lo, j = hi;
    int pivot = a[(lo + hi) / 2];
    int t;
    while (i <= j) {            // partition
        while (a[i] < pivot)
            i++;
        while (a[j] > pivot)
            j--;
        if (i <= j) {
            t = a[i]
            a[i] = a[j];
            a[j] = t;
            i++;
            j--;
        }
    }
    if (lo < j)                 // recurse
        QuickSort(a, lo, j);
    if (i < hi)
        QuickSort(a, i, hi);
}

C ++自下而上的合并排序示例:

void BottomUpMergeSort(int a[], int b[], size_t n)
{
size_t s = 1;                               // run size 
    if(GetPassCount(n) & 1){                // if odd number of passes
        for(s = 1; s < n; s += 2)           // swap in place for 1st pass
            if(a[s] < a[s-1])
                std::swap(a[s], a[s-1]);
        s = 2;
    }
    while(s < n){                           // while not done
        size_t ee = 0;                      // reset end index
        while(ee < n){                      // merge pairs of runs
            size_t ll = ee;                 // ll = start of left  run
            size_t rr = ll+s;               // rr = start of right run
            if(rr >= n){                    // if only left run
                rr = n;
                BottomUpCopy(a, b, ll, rr); //   copy left run
                break;                      //   end of pass
            }
            ee = rr+s;                      // ee = end of right run
            if(ee > n)
                ee = n;
            BottomUpMerge(a, b, ll, rr, ee);
        }
        std::swap(a, b);                    // swap a and b
        s <<= 1;                            // double the run size
    }
}

void BottomUpMerge(int a[], int b[], size_t ll, size_t rr, size_t ee)
{
    size_t o = ll;                          // b[]       index
    size_t l = ll;                          // a[] left  index
    size_t r = rr;                          // a[] right index
    while(1){                               // merge data
        if(a[l] <= a[r]){                   // if a[l] <= a[r]
            b[o++] = a[l++];                //   copy a[l]
            if(l < rr)                      //   if not end of left run
                continue;                   //     continue (back to while)
            while(r < ee)                   //   else copy rest of right run
                b[o++] = a[r++];
            break;                          //     and return
        } else {                            // else a[l] > a[r]
            b[o++] = a[r++];                //   copy a[r]
            if(r < ee)                      //   if not end of right run
                continue;                   //     continue (back to while)
            while(l < rr)                   //   else copy rest of left run
                b[o++] = a[l++];
            break;                          //     and return
        }
    }
}

void BottomUpCopy(int a[], int b[], size_t ll, size_t rr)
{
    while(ll < rr){                         // copy left run
        b[ll] = a[ll];
        ll++;
    }
}

size_t GetPassCount(size_t n)               // return # passes
{
    size_t i = 0;
    for(size_t s = 1; s < n; s <<= 1)
        i += 1;
    return(i);
}

使用指针的4种方式进行合并排序的C
++示例(goto用于节省代码空间,它是旧代码)。它开始进行4种方式的合并,然后在运行结束时切换为3种方式的合并,然后进行2种方式的合并,然后再复制剩余的剩余部分。这类似于用于外部排序的算法,但是外部排序逻辑更为通用,通常可以处理多达16种方式的合并。

int * BottomUpMergeSort(int a[], int b[], size_t n)
{
int *p0r;       // ptr to      run 0
int *p0e;       // ptr to end  run 0
int *p1r;       // ptr to      run 1
int *p1e;       // ptr to end  run 1
int *p2r;       // ptr to      run 2
int *p2e;       // ptr to end  run 2
int *p3r;       // ptr to      run 3
int *p3e;       // ptr to end  run 3
int *pax;       // ptr to set of runs in a
int *pbx;       // ptr for merged output to b
size_t rsz = 1; // run size
    if(n < 2)
        return a;
    if(n == 2){
        if(a[0] > a[1])std::swap(a[0],a[1]);
        return a;
    }
    if(n == 3){
        if(a[0] > a[2])std::swap(a[0],a[2]);
        if(a[0] > a[1])std::swap(a[0],a[1]);
        if(a[1] > a[2])std::swap(a[1],a[2]);
        return a;
    }
    while(rsz < n){
        pbx = &b[0];
        pax = &a[0];
        while(pax < &a[n]){
            p0e = rsz + (p0r = pax);
            if(p0e >= &a[n]){
                p0e = &a[n];
                goto cpy10;}
            p1e = rsz + (p1r = p0e);
            if(p1e >= &a[n]){
                p1e = &a[n];
                goto mrg201;}
            p2e = rsz + (p2r = p1e);
            if(p2e >= &a[n]){
                p2e = &a[n];
                goto mrg3012;}
            p3e = rsz + (p3r = p2e);
            if(p3e >= &a[n])
                p3e = &a[n];
            // 4 way merge
            while(1){
                if(*p0r <= *p1r){
                    if(*p2r <= *p3r){
                        if(*p0r <= *p2r){
mrg40:                      *pbx++ = *p0r++;    // run 0 smallest
                            if(p0r < p0e)       // if not end run continue
                                continue;
                            goto mrg3123;       // merge 1,2,3
                        } else {
mrg42:                      *pbx++ = *p2r++;    // run 2 smallest
                            if(p2r < p2e)       // if not end run continue
                                continue;
                            goto mrg3013;       // merge 0,1,3
                        }
                    } else {
                        if(*p0r <= *p3r){
                            goto mrg40;         // run 0 smallext
                        } else {
mrg43:                      *pbx++ = *p3r++;    // run 3 smallest
                            if(p3r < p3e)       // if not end run continue
                                continue;
                            goto mrg3012;       // merge 0,1,2
                        }
                    }
                } else {
                    if(*p2r <= *p3r){
                        if(*p1r <= *p2r){
mrg41:                      *pbx++ = *p1r++;    // run 1 smallest
                            if(p1r < p1e)       // if not end run continue
                                continue;
                            goto mrg3023;       // merge 0,2,3
                        } else {
                            goto mrg42;         // run 2 smallest
                        }
                    } else {
                        if(*p1r <= *p3r){
                            goto mrg41;         // run 1 smallest
                        } else {
                            goto mrg43;         // run 3 smallest
                        }
                    }
                }
            }
            // 3 way merge
mrg3123:    p0r = p1r;
            p0e = p1e;
mrg3023:    p1r = p2r;
            p1e = p2e;
mrg3013:    p2r = p3r;
            p2e = p3e;
mrg3012:    while(1){
                if(*p0r <= *p1r){
                    if(*p0r <= *p2r){
                        *pbx++ = *p0r++;        // run 0 smallest
                        if(p0r < p0e)           // if not end run continue
                            continue;
                        goto mrg212;            // merge 1,2
                    } else {
mrg32:                  *pbx++ = *p2r++;        // run 2 smallest
                        if(p2r < p2e)           // if not end run continue
                            continue;
                        goto mrg201;            // merge 0,1
                    }
                } else {
                    if(*p1r <= *p2r){
                        *pbx++ = *p1r++;        // run 1 smallest
                        if(p1r < p1e)           // if not end run continue
                            continue;
                        goto mrg202;            // merge 0,2
                    } else {
                        goto mrg32;             // run 2 smallest
                    }
                }
            }
            // 2 way merge
mrg212:     p0r = p1r;
            p0e = p1e;
mrg202:     p1r = p2r;
            p1e = p2e;
mrg201:     while(1){
                if(*p0r <= *p1r){
                    *pbx++ = *p0r++;            // run 0 smallest
                    if(p0r < p0e)               // if not end run continue
                        continue;
                    goto cpy11;
                } else {
                    *pbx++ = *p1r++;            // run 1 smallest
                    if(p1r < p1e)               // if not end run continue
                        continue;
                    goto cpy10;
                }
            }
            // 1 way copy
cpy11:      p0r = p1r;
            p0e = p1e;
cpy10:      while (1) {
                *pbx++ = *p0r++;                // copy element
                if (p0r < p0e)                  // if not end of run continue
                    continue;
                break;
            }
            pax += rsz << 2;            // setup for next set of runs
        }
        std::swap(a, b);                // swap ptrs
        rsz <<= 2;                      // quadruple run size
    }
    return a;                           // return sorted array
}


 类似资料:
  • 在处理接近排序的数组时,哪种算法的快速排序或合并排序性能更好?为什么?我意识到,在这种情况下,其他算法可能会比这些算法表现得更好。

  • 问题:Mergesort将一个数字列表分成两半,并对这两个数字进行递归调用。相反,您能在左半部分执行quicksort,在右半部分执行mergesort吗?如果是,则通过显示每个步骤来显示它将如何对下面的数字列表进行排序。如果没有,请解释为什么不能。 Iam应该使用MergeSort对数字列表进行排序。左半部分将使用快速排序进行排序? 我想出来了。安:是的,我们可以 使用mergeSort对数组的

  • 快速排序 from typing import List def quick_sort(arr: List, left, right) -> List: """ 快速排序是对冒泡排序的改进,核心思想是找到一个中值点pivot,然后将小于等于pivot的放在pivot的左边,大于pivot的放在右边,一直递归到无法拆分pivot点。 :param arr: :re

  • 问题内容: 如何为Java实现并发的quicksort或mergesort算法? 我们在16(虚拟)核的Mac上遇到问题,其中只有一个核(!)使用默认的Java排序算法工作,而且很好的机器没有得到充分利用是不好的。因此,我们编写了自己的代码(我编写了代码),并且确实取得了不错的提速(我编写了多线程快速排序,由于其分区特性,它可以很好地并行化,但我也可以编写合并排序)……但是我的实现只能扩展最多4个

  • 本文向大家介绍JavaScript希尔排序、快速排序、归并排序算法,包括了JavaScript希尔排序、快速排序、归并排序算法的使用技巧和注意事项,需要的朋友参考一下 以var a = [4,2,6,3,1,9,5,7,8,0];为例子。 1.希尔排序。 希尔排序是在插入排序上面做的升级。是先跟距离较远的进行比较的一些方法。 过程输出: 由输出可以看到。第一轮间隔为5。依次对这些间隔的数组插入排序

  • 快速排序是由东尼·霍尔所发展的一种排序算法。在平均状况下,排序 n 个项目要 Ο(nlogn) 次比较。在最坏状况下则需要 Ο(n2) 次比较,但这种状况并不常见。事实上,快速排序通常明显比其他 Ο(nlogn) 算法更快,因为它的内部循环(inner loop)可以在大部分的架构上很有效率地被实现出来。 快速排序使用分治法(Divide and conquer)策略来把一个串行(list)分为两