当前位置: 首页 > 编程笔记 >

java多线程Thread-per-Message模式详解

王昊
2023-03-14
本文向大家介绍java多线程Thread-per-Message模式详解,包括了java多线程Thread-per-Message模式详解的使用技巧和注意事项,需要的朋友参考一下

Thread-per-Message模式(这项工作就交给你了)

当你很忙碌的时候,这个时候公司楼下有个快递,于是你委托你的同事帮你拿一下你的快递,这样你就可以继续做自己的工作了

在Thread-Per-Message模式中,消息的委托端和执行端是不同的线程,消息的委托端会告诉执行端线程,这个工作就交给你了

Host类:

针对请求创建线程的类,主要通过开启新的线程,调用helper的handle,并将要打印的文字传递。

public class Host {
private final Helper helper = new Helper();
public void request(final int count,final char c){
System.out.println("request开始");
new Thread(){
public void run(){
helper.handle(count, c);
}
}.start();
System.out.println("request结束");
}
}

Helper类:

提供字符显示的功能,slowly方法模拟打印耗时

public class Helper {
public void handle(int count ,char c){
System.out.println("handle方法开始");
for(int i=0;i<count;i++){
slowly();
System.out.print(c);
}
System.out.println("");
System.out.println("handle方法结束");
}
private void slowly(){
try {
Thread.sleep(100);
} catch (InterruptedException e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
}
}

Main类:

创建Host的实例,并调用request的方法

public static void main(String[] args) {
System.out.println("main begin");
Host host = new Host();
host.request(10, 'A');
host.request(20, 'B');
host.request(30, 'C');
System.out.println("main End");
}

测试结果:

main begin

request方法开始了

request方法结束

request方法开始了

request方法结束

request方法开始了

request方法结束

main End

handle方法开始

handle方法开始

handle方法开始

BACBACACBACBACBACBACBACBACBA

handle方法结束

CBCBCBCBCBCBCBCBCBCBCB

handle方法结束

CCCCCCCCCC

handle方法结束

从运行的结果可以看出,request方法,并没有等待handle方法执行结束后再执行,而是调用handle方法后就返回到request方法中,直到运行结束,所以相当于request方法将所要进行的打印一定数量字符的工作转交给了handle方法,而request方法则可以再执行笨方法中的其他的语句,不必等待handle方法完成。这也同时告诉我们,当某些工作比较耗时时,则可以通过这种模式启动新的线程来执行处理。可以将此模式应用于服务器,这样就可以减少服务器的响应时间。

讲解一下进程和线程:

线程和进程最大的区别就是内存是否共存。

每个进程有自己的独立的内存空间,一个进程不可以擅自读取和写入其他的进程的内存,由于进程的内存空间是彼此独立的,所以一个进程无需担心被其他的进程所破坏。

线程之间是可以共存的,一个线程向实例中写入内容,其他线程就可以读取该实例的内容,由于多个线程可以访问同一个实例,我们就需要保证其正确执行互斥处理。

Host设计优化:

1.使用java.util.concurrent包下的ThreadFactory接口设计Host类

public class Host {
public void request(final int count,final char c){
System.out.println("request方法开始了");
threadFactory.newThread(
new Runnable() {
@Override
public void run() {
// TODO Auto-generated method stub
helper.handle(count, c);
}
 }
).start();;
System.out.println("request方法结束");
}
}

对应的Host实例化对象

Host host = new Host(Executors.defaultThreadFactory());

这样设计的优势在于,原来的使用new创建的实例代码依赖于java.lang.Thread类,无法控制创建线程的部分,可复用性较低,假如使用threadFactory来保存对应类的对象,调用newThread方法创建新的线程,这样便实现了线程的创建,这样不再依赖于Thread类,而是取决于构造函数中传入的ThreadFactory对象,实现了控制线程创建的细节。

使用java.util.concurrent.Executor接口重新设计Host类:

前面的ThreadFactory接口隐藏了线程创建的细节,但是并未隐藏线程创建的操作,如果使用Executor接口,那么线程创建的操作也会被隐藏起来

public class Host{
private final Helper helper = new Helper();
private final Executor executor;
public Host(Executor executor){
this.executor = executor;
}
public void request(final int count,final char c){
System.out.println("request方法开始了");
executor.execute(new Runnable() {
@Override
public void run() {
// TODO Auto-generated method stub
helper.handle(count, c);
}
});
System.out.println("request方法结束");
}
}

使用java.util.concurrent.ScheduledExecutorService类创建,其可以实现调度运行

public class Host{
private final Helper helper = new Helper();
private final ScheduledExecutorService scheduledExecutorService;
public Host(ScheduledExecutorService scheduledExecutorService){
this.scheduledExecutorService = scheduledExecutorService;
}
public void request(final int count,final char c){
System.out.println("request方法开始了");
scheduledExecutorService.schedule(new Runnable() {
@Override
public void run() {
// TODO Auto-generated method stub
helper.handle(count, c);
}
}, 3L, TimeUnit.SECONDS);
System.out.println("request方法结束");
}
}

测试主函数入口:

ScheduledExecutorService scheduledExecutorService = Executors.newScheduledThreadPool(5);
Host host = new Host(
scheduledExecutorService
);
try {
host.request(10, 'A');
host.request(20, 'B');
host.request(30, 'C');
} catch (Exception e) {
// TODO Auto-generated catch block
e.printStackTrace();
}finally{
scheduledExecutorService.shutdown();
System.out.println("main End");
}

总结

Client 角色调用Host角色的request方法发来的请求,该请求的实际处理则交给Helper的handle去执行,然而,如果Client直接从request中调用handle方法,那么直到实际操作结束之前,都无法从handle方法返回(request返回),这样一来request的响应性能就下降了,因此,Host角色会启动用于处理来自Client角色请求的新线程,并让该线程来调用handle,这样一来发出请求的线程便可以立即从handle中返回。这就是Thread-Per-Message模式。

 类似资料:
  • 本文向大家介绍Java  Thread多线程详解及用法解析,包括了Java  Thread多线程详解及用法解析的使用技巧和注意事项,需要的朋友参考一下 最全面的java多线程用法解析,如果你对Java的多线程机制并没有深入的研究,那么本文可以帮助你更透彻地理解Java多线程的原理以及使用方法。 1.创建线程 在Java中创建线程有两种方法:使用Thread类和使用Runnable接口。在使用Run

  • 本文向大家介绍Java多线程实战之单例模式与多线程的实例详解,包括了Java多线程实战之单例模式与多线程的实例详解的使用技巧和注意事项,需要的朋友参考一下 1、立即加载/饿汉模式 立即加载/饿汉模式是在类创建的同时已经创建好一个静态的对象供系统使用,不存在线程安全问题 2、延迟加载/懒汉模式 延迟加载/懒汉模式是在调用方法时实例才被创建,在多线程环境下,会出现取出多个实例的情况,与单例模式的初衷是

  • 本文向大家介绍java 线程创建多线程详解,包括了java 线程创建多线程详解的使用技巧和注意事项,需要的朋友参考一下 Java 线程类也是一个 object 类,它的实例都继承自 java.lang.Thread 或其子类。 可以用如下方式用 java 中创建一个线程,执行该线程可以调用该线程的 start()方法: Tread thread = new Thread(); thread.sta

  • 线程(译注:大约是C++11中最激动人心的特性了)是一种对程序中的执行或者计算的表述。跟许多现代计算一样,C++11中的线程之间能够共享地址空间。从这点上来看,它不同于进程:进程一般不会直接跟其它进程共享数据。在过去,C++针对不同的硬件和操作系统有着不同的线程实现版本。如今,C++将线程加入到了标准件库中:一个标准线程ABI。 许多大部头书籍以及成千上万的论文都曾涉及到并发、并行以及线程。在这一

  • 本文向大家介绍Java多线程通信实现方式详解,包括了Java多线程通信实现方式详解的使用技巧和注意事项,需要的朋友参考一下 这篇文章主要介绍了Java多线程通信实现方式详解,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 线程通信的方式: 1、共享变量 线程间通信可以通过发送信号,发送信号的一个简单方式是在共享对象的变量里设置信号值。线程A在一个同

  • 本文向大家介绍c# Thread类线程常用操作详解,包括了c# Thread类线程常用操作详解的使用技巧和注意事项,需要的朋友参考一下 创建线程 线程是通过扩展 Thread 类创建的。扩展的 Thread 类调用 Start() 方法来开始子线程的执行。 下面的程序演示了这个概念: 当上面的代码被编译和执行时,它会产生下列结果: 管理线程 Thread 类提供了各种管理线程的方法。 下面的实例演