这是一个命令行环境的五子棋程序。使用了minimax算法。
除了百度各个棋型的打分方式,所有代码皆为本人所撸。本程序结构与之前的井字棋、黑白棋一模一样。
有一点小问题,没时间弄了,就这样吧。
一、效果图
(略)
二、完整代码
from functools import wraps import time import csv ''' 五子棋 Gobang 作者:hhh5460 时间:20181213 ''' #1.初始化棋盘 #------------ def init_board(): ''' 初始化棋盘 棋盘规格 15*15 如下所示: board = [[. . . . . . . . . . . . . . .], [. . . . . . . . . . . . . . .], [. . . . . . . . . . . . . . .], [. . . . . . . . . . . . . . .], [. . . . . . . . . . . . . . .], [. . . . . . . . . . . . . . .], [. . . . . . . . . . . . . . .], [. . . . . . . . . . . . . . .], [. . . . . . . . . . . . . . .], [. . . . . . . . . . . . . . .], [. . . . . . . . . . . . . . .], [. . . . . . . . . . . . . . .], [. . . . . . . . . . . . . . .], [. . . . . . . . . . . . . . .], [. . . . . . . . . . . . . . .]] 其中: . – 未被占用 X – 被黑棋占用 O – 被白棋占用 ''' print('Init board...') time.sleep(0.5) n = 15 board = [['.' for _ in range(n)] for _ in range(n)] return board #2.确定玩家,执黑先走 #-------------------- def get_player(): ''' 人类玩家选择棋子颜色(黑'X'先走) ''' humancolor = input("Enter your color. (ex. 'X' or 'O'):").upper() computercolor = ['X', 'O'][humancolor == 'X'] return computercolor, humancolor #3.进入循环 #---------- #4.打印棋盘、提示走子 #------------------------------ def print_board(board): #ok ''' 打印棋盘、比分 开局: 1 2 3 4 5 6 7 8 9 a b c d e f 1 . . . . . . . . . . . . . . . 2 . . . . . . . . . . . . . . . 3 . . . . . . . . . . . . . . . 4 . . . . . . . . . . . . . . . 5 . . . . . . . . . . . . . . . 6 . . . . . . . . . . . . . . . 7 . . . . . . . . . . . . . . . 8 . . . . . . . . . . . . . . . 9 . . . . . . . . . . . . . . . a . . . . . . . . . . . . . . . b . . . . . . . . . . . . . . . c . . . . . . . . . . . . . . . d . . . . . . . . . . . . . . . e . . . . . . . . . . . . . . . f . . . . . . . . . . . . . . . ''' axises = list('123456789abcdef') print(' ', ' '.join(axises)) for i, v in enumerate(axises): print(v, ' '.join(board[i])) #5.思考走法、放弃终止 #-------------------- def get_human_move(board, color): #ok ''' 取人类玩家走法 ''' giveup = True # 放弃标志 legal_moves = _get_legal_moves(board, color) #print(','.join([translate_move(move) for move in legal_moves]), len(legal_moves)) while True: _move = input("Enter your move.(ex.'cd' means row=c col=d): ").lower() move = translate_move(_move) if move in legal_moves: giveup = False # 不放弃 break return move, giveup def _get_all_lianxin(board, move, color): #ok ''' 取当前点位落子后连星 1.按照棋盘两连、三连、四连的个数 double triple quadra penta ''' n = len(board) uncolor = ['X', 'O'][color == 'X'] # 反色 lianxin = [] # 连星数,len(lianxin) == 4 directions = ((0,1),(1,0),(1,1),(1,-1)) # 东, 南, 东南, 西南 for direction in directions: dr, dc = direction # 步幅 #r, c = move # 起点 count = 1 # 连星数,算上起点(落子位置) jump_count = [0, 0] # 顺、反方向跳开一个空格之后的连星数 jump_flag = [False, False] # 顺、反方向跳开一个空格的标志 block = [False, False] # 顺、反方向是否堵死 #name = ['',''] for i,v in enumerate([1, -1]): # 顺、反方向分别用1、-1表示 dr, dc = v*dr, v*dc # 步幅 r, c = move[0]+dr, move[1]+dc # 先走一步 while True: if not _is_on_board(board, [r, c]) or board[r][c] == uncolor: # 不在棋盘内,或对方棋子 block[i] = True # 被堵死 break if board[r][c] == '.': # 为空 if not _is_on_board(board, [r+dr, c+dc]) or board[r+dr][c+dc] != color: # 且下一格,不在棋盘内、或者非己方棋子 break if jump_flag[i] == True: # 前面已经跳了一格了,则终止 break # 能力所限,不考虑又跳一格的情况!!! else: jump_flag[i] = True elif board[r][c] == color: if jump_flag[i] == True: jump_count[i] += 1 else: count += 1 r, c = r + dr, c + dc # 步进 lianxin.append([count, jump_count, block]) return lianxin def _move_score(board, move): #ok ''' 对该落子位置“打分” 这个逻辑太复杂了,代码又长又臭!!暂时不考虑简化 棋型分值: 0.活五 +100000 1.死五 +100000 2.活四 +10000 3.死四 +1000 4.活三 +1000 5.死三 +100 6.活二 +100 7.死二 +10 8.活一 +10 9.死一 +2 特别说明: 10.跳N 两边棋型分相加 * 上一级分值的20% ?商榷 lianxin == [[2,[0,0],[True,False]], [1,[0,0],[True,False]], [3,[1,0],[False,False]], [3,[2,1],[True,False]]] ''' # 死一, 活一, 死二, 活二, 死三, 活三, 死四, 活四, 死五, 活五 scores = [ 2, 10, 10, 100, 100, 1000, 1000, 10000,100000,100000] sum_score = 0 for color in ['X','O']: for lianxin in _get_all_lianxin(board, move, color): count, jump_count, block = lianxin if jump_count[0] > 0 and jump_count[1] > 0: # 情况一:两边跳 if block[0] == True and block[1] == True: if count + jump_count[0] + jump_count[1] + 2 < 5: continue else: # 这边跳了 if block[0] == True: # 有跳的,先把分数加了再说(查表加分) sum_score += scores[jump_count[0]*2-2] # 加死的分 sum_score += min(scores[(jump_count[0]+count)*2-2] * 0.2, 200) # 上一级的20% else: sum_score += scores[jump_count[0]*2-1] # 加活的分 sum_score += min(scores[(jump_count[0]+count)*2-1] * 0.2, 200) # 上一级的20% # 这边也跳了 if block[1] == True: # 有跳的,先把分数加了再说(查表加分) sum_score += scores[jump_count[1]*2-2] # 加死的分 sum_score += min(scores[(jump_count[1]+count)*2-2] * 0.2, 200) # 上一级的20% else: sum_score += scores[jump_count[1]*2-1] # 加活的分 sum_score += min(scores[(jump_count[1]+count)*2-1] * 0.2, 200) # 上一级的20% # 中间 sum_score += scores[count*2-1] # 中间加活的分 elif jump_count[0] > 0 and jump_count[1] == 0: # 情况二:有一边跳 if block[0] == True and block[1] == True: if count + jump_count[0] + jump_count[1] + 1 < 5: continue else: # 跳的这边 if block[0] == True: # 先把跳那边的分数加了再说(查表加分) sum_score += scores[jump_count[0]*2-2] # 加死的分 sum_score += min(scores[(jump_count[0]+count)*2-2] * 0.2, 200) # 上一级的20% else: sum_score += scores[jump_count[0]*2-1] # 加活的分 sum_score += min(scores[(jump_count[0]+count)*2-1] * 0.2, 200) # 上一级的20% # 没跳的那边 if block[1] == True: sum_score += scores[count*2-2] # 加死的分 else: sum_score += scores[count*2-1] # 加活的分 elif jump_count[1] > 0 and jump_count[0] == 0: # 情况三:另一边跳 if block[0] == True and block[1] == True: if count + jump_count[0] + jump_count[1] + 1 < 5: continue else: # 跳的这边 if block[1] == True: # 先把跳那边的分数加了再说(查表加分) sum_score += scores[jump_count[1]*2-2] # 加死的分 sum_score += min(scores[(jump_count[1]+count)*2-2] * 0.2, 200) # 上一级的20% else: sum_score += scores[jump_count[1]*2-1] # 加活的分 sum_score += min(scores[(jump_count[1]+count)*2-1] * 0.2, 200) # 上一级的20% # 没跳的那边 if block[0] == True: sum_score += scores[count*2-2] # 加死的分 else: sum_score += scores[count*2-1] # 加活的分 elif jump_count[0] == 0 and jump_count[1] == 0: # 情况四:两边都没跳 if block[0] and block[1]: # 两边都堵死了 if count == 5: # 等于5才加,否则不加 sum_score += scores[count*2-2] # -1,-2一样 elif block[0] or block[1]: # 只堵死一边 sum_score += scores[count*2-2] # 加死的分 else: sum_score += scores[count*2-1] # 加活的分 return sum_score def _get_center_enmpty_points(board): #ok ''' 取中心点附近的空位 从中心点逐圈顺时针扫描,若连续两圈未有棋子,则停止 ''' n = len(board) center_point = [n//2, n//2] # 中心点[7,7],即'88' c1 = 0 # 空圈计数 legal_moves = [] # 保存空位 for i in range(8): #从内到外扫描8圈 c2 = True # 空圈标志 if i == 0: points = [[n//2, n//2]] else: # points = [第7-i行] + [第7+i列] + [第7+i行] + [第7-i列] # 从左上开始,顺时针一圈 points = [[7-i,c] for c in range(7-i,7+i)] + \ [[r,7+i] for r in range(7-i,7+i)] + \ [[7+i,c] for c in range(7+i,7-i,-1)] + \ [[r,7-i] for r in range(7+i,7-i,-1)] for point in points: if board[point[0]][point[1]] == '.': # 遇到空位,则 legal_moves.append(point) # 保存点位 else: c2 = False # 此圈非空 if c2 == True: # 若此圈为空,空圈计数器加1 c1 += 1 if c1 == 2: break else: # 否则,清零 c1 = 0 return legal_moves # 越前,棋盘点位分值越高! def minimax(board, color, maximizingPlayer, depth): ''' 极大极小算法 其中: maximizingPlayer = True #己方 用例: _, move = minimax(board, 'X', True, 4) # 假设计算机执黑'X' #参见: https://en.wikipedia.org/wiki/Minimax function minimax(node, depth, maximizingPlayer) is if depth = 0 or node is a terminal node then return the heuristic value of node if maximizingPlayer then value := −∞ for each child of node do value := max(value, minimax(child, depth − 1, FALSE)) return value else (* minimizing player *) value := +∞ for each child of node do value := min(value, minimax(child, depth − 1, TRUE)) return value (* Initial call *) minimax(origin, depth, TRUE) ''' pass def get_computer_move(board, color): ''' 取计算机玩家走法 计算机走子策略: 1.对所有合法的落子位置逐个“打分”(如何“打分”,决定了计算机下棋的水平) 2.取所有分值最高的落子位置 ''' print('Computer is thinking...', end='') legal_moves = _get_legal_moves(board, color) scores = [_move_score(board, move) for move in legal_moves] max_score = max(scores) # 最高分值 best_move = legal_moves[scores.index(max_score)] print("'{}'".format(translate_move(best_move))) return best_move def _is_legal_move(board, move): #ok ''' 判断落子位置是否合法 说明:只要在棋盘内,且为空,即合法 ''' if _is_on_board(board, move) and board[move[0]][move[1]] == '.': return True return False def _get_legal_moves(board, color): #ok ''' 取当前颜色棋子所有的合法走法 返回格式:[[x1,y1], [x2,y2], ...] ''' legal_moves = _get_center_enmpty_points(board) return legal_moves def _is_on_board(board, move): #ok ''' 判断点位是否在棋盘范围内 ''' n = len(board) return move[0] in range(n) and move[1] in range(n) def translate_move(move): #ok ''' 转换坐标 如'1a'可转换为[0,9];又如[9,10]转换为'ab' 此函数,只是为了方便,不是必要的 ''' axises = list('123456789abcdef') if type(move) is str: # 如'cd' row = axises.index(move[0]) col = axises.index(move[1]) _move = [row, col] # 得[2,3] elif type(move) is list: # 如[2,3] row = axises[move[0]] col = axises[move[1]] _move = '{}{}'.format(row, col) # 得'cd' return _move #6.落子 #---------- def do_move(board, move, color): #ok ''' 在当前位置落子 ''' assert board[move[0]][move[1]] == '.' board[move[0]][move[1]] = color #7.判断局面、是否终止 #------------------------------ def check_board(board, color): #ok ''' 检查棋盘 返回:是否胜利 ''' n = len(board) directions = ((0,1),(1,0),(1,1),(1,-1)) # 东, 南, 东南, 西南 # 四个搜索方向的起点(坐标),分四组。 # 形如:[[第1列的点], [第1行的点], [第1列+第1行的点], [第1行+第n列的点]] all_start_points = [[[i, 0] for i in range(n)], [[0, j] for j in range(n)], [[i, 0] for i in range(n-4)] + [[0, j] for j in range(1,n-4)], # 排除了长度小于5,及重复的情况 [[0, j] for j in range(4,n)] + [[i, n-1] for i in range(1,n-4)]] for direction, start_points in zip(directions, all_start_points): dr, dc = direction # 步幅 for start_point in start_points: r, c = start_point # 起点 count = 0 while _is_on_board(board, [r, c]): if board[r][c] == color: count += 1 if count == 5: return True else: count = 0 r, c = r + dr, c + dc # 步进 return False def check_board__(board, color): # 废弃! ''' 检查棋盘 (不如上面的方式简洁) 返回 是否胜利 ''' n = len(board) uncolor = ['X', 'O'][color == 'X'] # 反色 # 1.行搜索 for i in range(n): count = 0 for j in range(n): if board[i][j] == color: count += 1 if count == 5: return True # 'Winner is ' + color elif board[i][j] == uncolor: count = 0 # 2.列搜索 for j in range(n): count = 0 for i in range(n): if board[i][j] == color: count += 1 if count == 5: return True # 'Winner is ' + color elif board[i][j] == uncolor: count = 0 # 3.斜搜索k=1左上右下 #3.a.k=1对角线上方 for j in range(n-4): # 终止列n-4 count = 0 for i in range(n-j): # 终止行n-j if board[i][j+i] == color: count += 1 if count == 5: return True elif board[i][j+i] == uncolor: count = 0 #3.b.k=1对角线下方 for i in range(1, n-4): # 终止行n-4 count = 0 for j in range(n-i): # 终止列n-i if board[i+j][j] == color: count += 1 if count == 5: return True elif board[i+j][j] == uncolor: count = 0 # 4.斜搜索k=-1左下右上 #4.a.k=-1对角线下方 for j in range(n-4): # 终止列n-4 count = 0 for i in range(n-j): # 终止行n-j if board[n-i-1][j+i] == color: count += 1 if count == 5: return True elif board[n-i-1][j+i] == uncolor: count = 0 #4.b.k=-1对角线上方 for j in range(4, n): count = 0 for i in range(n-1): if board[i][j-i] == color: count += 1 if count == 5: return True elif board[i][j-i] == uncolor: count = 0 return False #8.游戏结束,返回信息 #-------------------- def logging(func): #ok ''' 记录游戏相关信息 (装饰器) 包括: 开始时间、比赛耗时、棋盘大小、黑棋玩家、白棋玩家、游戏比分、本局棋谱 保存到reversi.csv文件 ''' @wraps(func) def wrap(*args, **kwargs): try: start = time.strftime("%Y%m%d %H:%M:%S", time.localtime()) # 开始时间 t1 = time.time() info = func(*args,**kwargs) # 棋盘大小、黑棋玩家、白棋玩家、游戏比分、本局棋谱(主程序) t2 = time.time() t = int(t2 - t1) # 比赛耗时 line = [start, t, *info] with open('gobang.csv', 'a') as f: writer = csv.writer(f, lineterminator='\n') writer.writerow(line) # 写入 except Exception as e: pass return wrap #========================================== # 主函数 #========================================== #@logging def main(): #ok ''' 主程序 人机对战 流程: 1.初始化棋盘 2.确定棋手,黑先 3.进入循环 4.打印棋盘,提示走子 5.思考走法,放弃终止 6.落子 7.检查棋盘,是否终止 8.切换棋手 9.游戏结束,返回信息 ''' # 1.初始化棋盘 board = init_board() # 2.确定玩家,执黑先走 computer_color, human_color = get_player() current_color = 'X' record = '' # 棋谱,如'X:ab O:aa X:ba ...' # 3.进入循环 while True: # 4.打印棋盘、提示走子 print_board(board) print("Now turn to '{}'...".format(current_color)) # 5.思考走法,记录棋谱 if current_color == computer_color: move = get_computer_move(board, current_color) elif current_color == human_color: move, giveup = get_human_move(board, current_color) if giveup == True: break # 放弃则终止 record = record + ' {}:{}'.format(current_color, translate_move(move)) # 录入棋谱 # 6.落子 do_move(board, move, current_color) # 7.判断局面 done = check_board(board, current_color) # 返回终止标志 # 7_1.终止 if done == True: print_board(board) print("Game over! Winner is '{}'".format(current_color)) break # 8.切换棋手 current_color = ['X', 'O'][current_color == 'X'] #测试 def test_get_center_enmpty_points(): ''' # 1 2 3 4 5 6 7 8 9 a b c d e f board = [[. . . . . . . . . . . . . . .],#1 [. . . . . . . . . . . . . . .],#2 [. . . . . . . . . . . . . . .],#3 [. . . . . . . . . . . . . . .],#4 [. . . . . . . . . . . . . . .],#5 [. . . . . . . . . . . . . . .],#6 [. . . . . . . . . . . . . . .],#7 [. . . . . . . . . . . . . . .],#8 [. . . . . . . . . . . . . . .],#9 [. . . . . . . . . . . . . . .],#a [. . . . . . . . . . . . . . .],#b [. . . . . . . . . . . . . . .],#c [. . . . . . . . . . . . . . .],#d [. . . . . . . . . . . . . . .],#e [. . . . . . . . . . . . . . .]]#f # 1 2 3 4 5 6 7 8 9 a b c d e f board = [[. . . . . . . . . . . . . . .],#1 [. . . . . . . . . . . . . . .],#2 [. . . . . . . . . . . . . . .],#3 [. . . . . . . . . . . . . . .],#4 [. . . . . . . . . X . . . . .],#5 [. . . . . . X . . . . . . . .],#6 [. . . . . O . . X O . . . . .],#7 [. . . . . X X O X . . . . . .],#8 [. . . . . X O X . . . . . . .],#9 [. . . . . . . . . . X . . . .],#a [. . . X . . . . . . . . . . .],#b [. . X . . . . . . . . . . . .],#c [. O . . . . . . . . . . . . .],#d [. . . . . . . . . . . . . . .],#e [. . . . . . . . . . . . . . .]]#f ''' print('Testing _get_center_enmpty_points()...') # 1 2 3 4 5 6 7 8 9 a b c d e f board = [['.','.','.','.','.','.','.','.','.','.','.','.','.','.','.'],#1 ['.','.','.','.','.','.','.','.','.','.','.','.','.','.','.'],#2 ['.','.','.','.','.','.','.','.','.','.','.','.','.','.','.'],#3 ['.','.','.','.','.','.','.','.','.','.','.','.','.','.','.'],#4 ['.','.','.','.','.','.','.','.','.','.','.','.','.','.','.'],#5 ['.','.','.','.','.','.','.','.','.','.','.','.','.','.','.'],#6 ['.','.','.','.','.','.','.','.','.','.','.','.','.','.','.'],#7 ['.','.','.','.','.','.','.','X','.','.','.','.','.','.','.'],#8 ['.','.','.','.','.','.','.','.','.','.','.','.','.','.','.'],#9 ['.','.','.','.','.','.','.','.','.','.','.','.','.','.','.'],#a ['.','.','.','.','.','.','.','.','.','.','.','.','.','.','.'],#b ['.','.','.','.','.','.','.','.','.','.','.','.','.','.','.'],#c ['.','.','.','.','.','.','.','.','.','.','.','.','.','.','.'],#d ['.','.','.','.','.','.','.','.','.','.','.','.','.','.','.'],#e ['.','.','.','.','.','.','.','.','.','.','.','.','.','.','.']]#f empty_points = _get_center_enmpty_points(board) translate_points = [translate_move(move) for move in empty_points] #print(translate_points) assert translate_points == ['77','78','79','89','99','98','97','87', '66','67','68','69','6a','7a','8a','9a','aa','a9','a8','a7','a6','96','86','76'] # 1 2 3 4 5 6 7 8 9 a b c d e f board = [['.','.','.','.','.','.','.','X','.','.','.','.','.','.','.'],#1 ['.','.','.','.','.','.','.','X','.','.','.','.','.','.','.'],#2 ['.','.','.','.','.','.','.','X','.','.','.','.','.','.','.'],#3 ['.','.','.','.','.','.','.','X','.','.','.','.','.','.','.'],#4 ['.','.','.','.','.','.','.','X','.','.','.','.','.','.','.'],#5 ['.','.','.','.','.','.','.','X','.','.','.','.','.','.','.'],#6 ['.','.','.','.','.','.','.','X','.','.','.','.','.','.','.'],#7 ['.','.','.','.','.','.','.','X','.','.','.','.','.','.','.'],#8 ['.','.','.','.','.','.','.','.','.','.','.','.','.','.','.'],#9 ['.','.','.','.','.','.','.','.','.','.','.','.','.','.','.'],#a ['.','.','.','.','.','.','.','.','.','.','.','.','.','.','.'],#b ['.','.','.','.','.','.','.','.','.','.','.','.','.','.','.'],#c ['.','.','.','.','.','.','.','.','.','.','.','.','.','.','.'],#d ['.','.','.','.','.','.','.','.','.','.','.','.','.','.','.'],#e ['.','.','.','.','.','.','.','.','.','.','.','.','.','.','.']]#f empty_points = _get_center_enmpty_points(board) translate_points = [translate_move(move) for move in empty_points] print(translate_points) assert '11' in translate_points # 1 2 3 4 5 6 7 8 9 a b c d e f board = [['.','.','.','.','.','.','.','.','.','.','.','.','.','.','.'],#1 ['.','.','.','.','.','.','.','X','.','.','.','.','.','.','.'],#2 ['.','.','.','.','.','.','.','X','.','.','.','.','.','.','.'],#3 ['.','.','.','.','.','.','.','X','.','.','.','.','.','.','.'],#4 ['.','.','.','.','.','.','.','X','.','.','.','.','.','.','.'],#5 ['.','.','.','.','.','.','.','X','.','.','.','.','.','.','.'],#6 ['.','.','.','.','.','.','.','X','.','.','.','.','.','.','.'],#7 ['.','.','.','.','.','.','.','X','.','.','.','.','.','.','.'],#8 ['.','.','.','.','.','.','.','.','.','.','.','.','.','.','.'],#9 ['.','.','.','.','.','.','.','.','.','.','.','.','.','.','.'],#a ['.','.','.','.','.','.','.','.','.','.','.','.','.','.','.'],#b ['.','.','.','.','.','.','.','.','.','.','.','.','.','.','.'],#c ['.','.','.','.','.','.','.','.','.','.','.','.','.','.','.'],#d ['.','.','.','.','.','.','.','.','.','.','.','.','.','.','.'],#e ['.','.','.','.','.','.','.','.','.','.','.','.','.','.','.']]#f empty_points = _get_center_enmpty_points(board) translate_points = [translate_move(move) for move in empty_points] print(translate_points) assert '11' in translate_points print('ok') def test_move_score(): ''' _move_score(board, move, color) # 1 2 3 4 5 6 7 8 9 a b c d e f board = [[. . . . . . . . . . . . . . .],#1 [. . . . . . . . . . . . . . .],#2 [. . . . . . . . . . . . . . .],#3 [. . . . . . . . . . . . . . .],#4 [. . . . . . . . . . . . . . .],#5 [. . . . . . . . . . . . . . .],#6 [. . . . . . . . . . . . . . .],#7 [. . . . . . . . . . . . . . .],#8 [. . . . . . . . . . . . . . .],#9 [. . . . . . . . . . . . . . .],#a [. . . . . . . . . . . . . . .],#b [. . . . . . . . . . . . . . .],#c [. . . . . . . . . . . . . . .],#d [. . . . . . . . . . . . . . .],#e [. . . . . . . . . . . . . . .]]#f # 1 2 3 4 5 6 7 8 9 a b c d e f board = [[. . . . . . . . . . . . . . .],#1 [. . . . . . . . . . . . . . .],#2 [. . . . . . . . . . . . . . .],#3 [. . . . . . . . . . . . . . .],#4 [. . . . . . . . . X . . . . .],#5 [. . . . . . X . . . . . . . .],#6 [. . . . . O . . X O . . . . .],#7 [. . . . . X X O X . . . . . .],#8 [. . . . . X O X . . . . . . .],#9 [. . . . . . . . . . X . . . .],#a [. . . X . . . . . . . . . . .],#b [. . X . . . . . . . . . . . .],#c [. O . . . . . . . . . . . . .],#d [. . . . . . . . . . . . . . .],#e [. . . . . . . . . . . . . . .]]#f ''' print('Testing _move_score()...') # 1 2 3 4 5 6 7 8 9 a b c d e f board = [['.','.','.','.','.','.','.','.','.','.','.','.','.','.','.'],#1 ['.','.','.','.','.','.','.','.','.','.','.','.','.','.','.'],#2 ['.','.','.','.','.','.','.','.','.','.','.','.','.','.','.'],#3 ['.','.','.','.','.','.','.','.','.','.','.','.','.','.','.'],#4 ['.','.','.','.','.','.','.','.','.','X','.','.','.','.','.'],#5 ['.','.','.','.','.','.','X','.','.','.','.','.','.','.','.'],#6 ['.','.','.','.','.','O','.','.','X','O','.','.','.','.','.'],#7 ['.','.','.','.','.','X','X','O','X','.','.','.','.','.','.'],#8 ['.','.','.','.','.','X','O','X','.','.','.','.','.','.','.'],#9 ['.','.','.','.','.','.','.','.','.','.','X','.','.','.','.'],#a ['.','.','.','X','.','.','.','.','.','.','.','.','.','.','.'],#b ['.','.','X','.','.','.','.','.','.','.','.','.','.','.','.'],#c ['.','O','.','.','.','.','.','.','.','.','.','.','.','.','.'],#d ['.','.','.','.','.','.','.','.','.','.','.','.','.','.','.'],#e ['.','.','.','.','.','.','.','.','.','.','.','.','.','.','.']]#f #[count, jump_count, block] # 东, 南, 东南, 西南 lianxin = _get_all_lianxin(board, [6,7], 'X') #print(lianxin) assert lianxin == [[2,[0,0],[True,False]], [1,[0,0],[True,False]], [3,[1,0],[False,False]], [3,[2,1],[True,False]]] # 死一, 活一, 死二, 活二, 死三, 活三, 死四, 活四, 死五, 活五 scores = [ 2, 10, 10, 100, 100, 1000, 1000, 10000,100000,100000] assert _move_score(board, [6,7], 'X') == 10 + 2 + (1000 + 10 + 200) + (1000 + 10 + 10 + 200 + 200) print('ok') def test_get_all_lianxin(): ''' get_all_lianxin(board, move, color) # 1 2 3 4 5 6 7 8 9 a b c d e f board = [[. . . . . . . . . . . . . . .],#1 [. . . . . . . . . . . . . . .],#2 [. . . . . . . . . . . . . . .],#3 [. . . . . . . . . . . . . . .],#4 [. . . . . . . . . . . . . . .],#5 [. . . . . . . . . . . . . . .],#6 [. . . . . . . . . . . . . . .],#7 [. . . . . . . . . . . . . . .],#8 [. . . . . . . . . . . . . . .],#9 [. . . . . . . . . . . . . . .],#a [. . . . . . . . . . . . . . .],#b [. . . . . . . . . . . . . . .],#c [. . . . . . . . . . . . . . .],#d [. . . . . . . . . . . . . . .],#e [. . . . . . . . . . . . . . .]]#f # 1 2 3 4 5 6 7 8 9 a b c d e f board = [[. . . . . . . . . . . . . . .],#1 [. . . . . . . . . . . . . . .],#2 [. . . . . . . . . . . . . . .],#3 [. . . . . . . . . . . . . . .],#4 [. . . . . . . . . X . . . . .],#5 [. . . . . . X . . . . . . . .],#6 [. . . . . O . . X O . . . . .],#7 [. . . . . X X O X . . . . . .],#8 [. . . . . X O X . . . . . . .],#9 [. . . . . . . . . . X . . . .],#a [. . . X . . . . . . . . . . .],#b [. . X . . . . . . . . . . . .],#c [. O . . . . . . . . . . . . .],#d [. . . . . . . . . . . . . . .],#e [. . . . . . . . . . . . . . .]]#f ''' print('Testing _get_all_lianxin()...') # 1 2 3 4 5 6 7 8 9 a b c d e f board = [['.','.','.','.','.','.','.','.','.','.','.','.','.','.','.'],#1 ['.','.','.','.','.','.','.','.','.','.','.','.','.','.','.'],#2 ['.','.','.','.','.','.','.','.','.','.','.','.','.','.','.'],#3 ['.','.','.','.','.','.','.','.','.','.','.','.','.','.','.'],#4 ['.','.','.','.','.','.','.','.','.','X','.','.','.','.','.'],#5 ['.','.','.','.','.','.','X','.','.','.','.','.','.','.','.'],#6 ['.','.','.','.','.','O','.','.','X','O','.','.','.','.','.'],#7 ['.','.','.','.','.','X','X','O','X','.','.','.','.','.','.'],#8 ['.','.','.','.','.','X','O','X','.','.','.','.','.','.','.'],#9 ['.','.','.','.','.','.','.','.','.','.','X','.','.','.','.'],#a ['.','.','.','X','.','.','.','.','.','.','.','.','.','.','.'],#b ['.','.','X','.','.','.','.','.','.','.','.','.','.','.','.'],#c ['.','O','.','.','.','.','.','.','.','.','.','.','.','.','.'],#d ['.','.','.','.','.','.','.','.','.','.','.','.','.','.','.'],#e ['.','.','.','.','.','.','.','.','.','.','.','.','.','.','.']]#f #[count, jump_count, block] # 东, 南, 东南, 西南 lianxin = _get_all_lianxin(board, [6,7], 'X') #print(lianxin) assert lianxin == [[2,[0,0],[True,False]], [1,[0,0],[True,False]], [3,[1,0],[False,False]], [3,[2,1],[True,False]]] # 1 2 3 4 5 6 7 8 9 a b c d e f board = [['.','.','.','.','.','.','.','.','.','.','.','.','.','.','.'], #1 ['.','.','.','.','.','.','.','.','.','.','.','.','.','.','.'], #2 ['.','.','.','.','.','.','.','.','.','.','.','.','.','.','.'], #3 ['.','.','.','.','.','.','.','.','.','X','.','.','.','.','.'], #4 ['.','.','.','.','.','.','X','.','.','.','.','.','.','.','.'], #5 ['.','.','.','.','.','O','.','.','X','O','.','.','.','.','.'], #6 ['.','.','.','.','.','X','X','O','X','.','.','.','.','.','.'], #7 ['.','.','.','.','.','X','O','X','.','.','.','.','.','.','.'], #8 ['.','.','.','.','.','.','.','.','.','.','X','.','.','.','.'], #9 ['.','.','.','X','.','.','.','.','.','.','.','.','.','.','.'], #a ['.','.','X','.','.','.','.','.','.','.','.','.','.','.','.'], #b ['.','O','.','.','.','.','.','.','.','.','.','.','.','.','.'], #c ['.','.','.','.','.','.','.','.','.','.','.','.','.','.','.'], #d ['.','.','.','.','.','.','.','.','.','.','.','.','.','.','.'], #e ['.','.','.','.','.','.','.','.','.','.','.','.','.','.','.']] #f #[count, jump_count, block] # 东, 南, 东南, 西南 lianxin = _get_all_lianxin(board, [5,7], 'X') #print(lianxin) assert lianxin == [[2,[0,0],[True,False]], [1,[0,0],[True,False]], [3,[1,0],[False,False]], [3,[2,1],[True,False]]] print('ok') def test_check_board(): ''' ''' print('Testing check_board()...') board = [['.','.','.','.','.','.','.','.','.','.','.','.','.','.','.'], ['.','.','.','.','.','.','.','.','.','.','.','.','.','.','.'], ['.','.','.','.','.','.','.','.','.','.','.','.','.','.','.'], ['.','.','.','.','.','.','.','.','.','.','.','.','.','.','.'], ['.','.','.','.','.','.','.','.','.','.','.','.','.','.','.'], ['.','.','.','.','.','.','.','.','.','.','.','.','.','.','.'], ['.','.','.','.','.','.','.','.','.','.','.','.','.','.','.'], ['.','.','.','.','.','.','.','.','.','.','.','.','.','.','.'], ['.','.','.','.','.','.','.','.','.','.','.','.','.','.','.'], ['.','.','.','.','.','.','.','.','.','.','.','.','.','.','.'], ['.','.','.','.','.','.','.','.','.','.','.','.','.','.','.'], ['.','.','.','.','.','.','.','.','.','.','.','.','.','.','.'], ['.','.','.','.','.','.','.','.','.','.','.','.','.','.','.'], ['.','.','.','.','.','.','.','.','.','.','.','.','.','.','.'], ['.','.','.','.','.','.','.','.','.','.','.','.','.','.','.']] assert check_board(board, 'X') == False board = [['.','.','.','.','.','.','.','.','.','.','.','.','.','.','.'], ['.','.','.','.','.','.','.','.','.','.','.','.','.','.','.'], ['.','.','.','.','.','.','.','.','.','.','.','.','.','.','.'], ['.','.','.','.','.','.','.','.','.','.','.','.','.','.','.'], ['X','X','X','X','X','.','.','.','.','.','.','.','.','.','.'], ['.','.','.','.','.','.','.','.','.','.','.','.','.','.','.'], ['.','.','.','.','.','.','.','.','.','.','.','.','.','.','.'], ['.','.','.','.','.','.','.','.','.','.','.','.','.','.','.'], ['.','.','.','.','.','.','.','.','.','.','.','.','.','.','.'], ['.','.','.','.','.','.','.','.','.','.','.','.','.','.','.'], ['.','.','.','.','.','.','.','.','.','.','.','.','.','.','.'], ['.','.','.','.','.','.','.','.','.','.','.','.','.','.','.'], ['.','.','.','.','.','.','.','.','.','.','.','.','.','.','.'], ['.','.','.','.','.','.','.','.','.','.','.','.','.','.','.'], ['.','.','.','.','.','.','.','.','.','.','.','.','.','.','.']] assert check_board(board, 'X') == True board = [['X','.','.','.','.','.','.','.','.','.','.','.','.','.','.'], ['X','.','.','.','.','.','.','.','.','.','.','.','.','.','.'], ['X','.','.','.','.','.','.','.','.','.','.','.','.','.','.'], ['X','.','.','.','.','.','.','.','.','.','.','.','.','.','.'], ['X','.','.','.','.','.','.','.','.','.','.','.','.','.','.'], ['.','.','.','.','.','.','.','.','.','.','.','.','.','.','.'], ['.','.','.','.','.','.','.','.','.','.','.','.','.','.','.'], ['.','.','.','.','.','.','.','.','.','.','.','.','.','.','.'], ['.','.','.','.','.','.','.','.','.','.','.','.','.','.','.'], ['.','.','.','.','.','.','.','.','.','.','.','.','.','.','.'], ['.','.','.','.','.','.','.','.','.','.','.','.','.','.','.'], ['.','.','.','.','.','.','.','.','.','.','.','.','.','.','.'], ['.','.','.','.','.','.','.','.','.','.','.','.','.','.','.'], ['.','.','.','.','.','.','.','.','.','.','.','.','.','.','.'], ['.','.','.','.','.','.','.','.','.','.','.','.','.','.','.']] assert check_board(board, 'X') == True board = [['.','.','.','.','.','.','.','.','.','.','X','.','.','.','.'], ['.','.','.','.','.','.','.','.','.','.','.','X','.','.','.'], ['.','.','.','.','.','.','.','.','.','.','.','.','X','.','.'], ['.','.','.','.','.','.','.','.','.','.','.','.','.','X','.'], ['.','.','.','.','.','.','.','.','.','.','.','.','.','.','X'], ['.','.','.','.','.','.','.','.','.','.','.','.','.','.','.'], ['.','.','.','.','.','.','.','.','.','.','.','.','.','.','.'], ['.','.','.','.','.','.','.','.','.','.','.','.','.','.','.'], ['.','.','.','.','.','.','.','.','.','.','.','.','.','.','.'], ['.','.','.','.','.','.','.','.','.','.','.','.','.','.','.'], ['.','.','.','.','.','.','.','.','.','.','.','.','.','.','.'], ['.','.','.','.','.','.','.','.','.','.','.','.','.','.','.'], ['.','.','.','.','.','.','.','.','.','.','.','.','.','.','.'], ['.','.','.','.','.','.','.','.','.','.','.','.','.','.','.'], ['.','.','.','.','.','.','.','.','.','.','.','.','.','.','.']] assert check_board(board, 'X') == True board = [['.','.','.','.','.','.','.','.','.','.','.','.','.','.','.'], ['.','.','.','.','.','.','.','.','.','.','.','.','.','.','.'], ['.','.','.','.','.','.','.','.','.','.','.','.','.','.','.'], ['.','.','.','.','.','.','.','.','.','.','.','.','.','.','.'], ['.','.','.','.','.','.','.','.','.','.','.','.','.','.','.'], ['.','.','.','.','.','.','.','.','.','.','.','.','.','.','.'], ['.','.','.','.','.','.','.','.','.','.','.','.','.','.','.'], ['.','.','.','.','.','.','.','.','.','.','.','.','.','.','.'], ['.','.','.','.','.','.','.','.','.','.','.','.','.','.','.'], ['.','.','.','.','.','.','.','.','.','.','.','.','.','.','.'], ['X','.','.','.','.','.','.','.','.','.','.','.','.','.','.'], ['.','X','.','.','.','.','.','.','.','.','.','.','.','.','.'], ['.','.','X','.','.','.','.','.','.','.','.','.','.','.','.'], ['.','.','.','X','.','.','.','.','.','.','.','.','.','.','.'], ['.','.','.','.','X','.','.','.','.','.','.','.','.','.','.']] assert check_board(board, 'X') == True board = [['.','.','.','.','.','.','.','.','.','.','.','.','.','.','.'], ['.','.','.','.','.','.','.','.','.','.','.','.','.','.','.'], ['.','.','.','.','.','.','.','.','.','.','.','.','.','.','.'], ['.','.','.','.','.','.','.','.','.','.','.','.','.','.','.'], ['.','.','.','.','.','.','.','.','.','.','.','.','.','.','.'], ['.','.','.','.','.','.','.','.','.','.','.','.','.','.','.'], ['.','.','.','.','.','.','.','.','.','.','.','.','.','.','.'], ['.','.','.','.','.','.','.','.','.','.','.','.','.','.','.'], ['.','.','.','.','.','.','.','.','.','.','.','.','.','.','.'], ['.','.','.','.','.','.','.','.','.','.','.','.','.','.','.'], ['.','.','.','.','.','.','.','.','.','.','.','.','.','.','X'], ['.','.','.','.','.','.','.','.','.','.','.','.','.','X','.'], ['.','.','.','.','.','.','.','.','.','.','.','.','X','.','.'], ['.','.','.','.','.','.','.','.','.','.','.','X','.','.','.'], ['.','.','.','.','.','.','.','.','.','.','X','.','.','.','.']] assert check_board(board, 'X') == True board = [['.','.','.','.','X','.','.','.','.','.','.','.','.','.','.'], ['.','.','.','X','.','.','.','.','.','.','.','.','.','.','.'], ['.','.','X','.','.','.','.','.','.','.','.','.','.','.','.'], ['.','X','.','.','.','.','.','.','.','.','.','.','.','.','.'], ['X','.','.','.','.','.','.','.','.','.','.','.','.','.','.'], ['.','.','.','.','.','.','.','.','.','.','.','.','.','.','.'], ['.','.','.','.','.','.','.','.','.','.','.','.','.','.','.'], ['.','.','.','.','.','.','.','.','.','.','.','.','.','.','.'], ['.','.','.','.','.','.','.','.','.','.','.','.','.','.','.'], ['.','.','.','.','.','.','.','.','.','.','.','.','.','.','.'], ['.','.','.','.','.','.','.','.','.','.','.','.','.','.','.'], ['.','.','.','.','.','.','.','.','.','.','.','.','.','.','.'], ['.','.','.','.','.','.','.','.','.','.','.','.','.','.','.'], ['.','.','.','.','.','.','.','.','.','.','.','.','.','.','.'], ['.','.','.','.','.','.','.','.','.','.','.','.','.','.','.']] assert check_board(board, 'X') == True print('ok') if __name__ == '__main__': main() #test_check_board() #test_get_all_lianxin() #test_move_score() #test_get_center_enmpty_points()
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持小牛知识库。
本文向大家介绍python实现五子棋游戏,包括了python实现五子棋游戏的使用技巧和注意事项,需要的朋友参考一下 本文实例为大家分享了python实现五子棋游戏的具体代码,供大家参考,具体内容如下 话不多说,直接上代码: 全部工程文件,在GitHub:五子棋 效果预览: 以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持呐喊教程。
本文向大家介绍python实现粒子群算法,包括了python实现粒子群算法的使用技巧和注意事项,需要的朋友参考一下 粒子群算法 粒子群算法源于复杂适应系统(Complex Adaptive System,CAS)。CAS理论于1994年正式提出,CAS中的成员称为主体。比如研究鸟群系统,每个鸟在这个系统中就称为主体。主体有适应性,它能够与环境及其他的主体进行交流,并且根据交流的过程“学习”或“积累
本文向大家介绍python pygame实现五子棋小游戏,包括了python pygame实现五子棋小游戏的使用技巧和注意事项,需要的朋友参考一下 今天学习了如何使用pygame来制作小游戏,下面是五子棋的代码,我的理解都写在注释里了 更多关于python游戏的精彩文章请点击查看以下专题: python俄罗斯方块游戏集合 python经典小游戏汇总 python微信跳一跳游戏集合 更多有趣的经典小
在我的方法newminimax49中,我有一个minimax算法,它利用了本文中建议给我的记忆和其他一般性改进。该方法使用一个简单的启发式电路板评估函数。我的问题基本上是关于alpha-beta修剪,即我的minimax方法是否使用alpha-beta修剪。据我所知,我相信这是真的,然而,我用来实现它的东西似乎太简单了,不可能是真的。此外,其他人建议我使用alpha-beta剪枝,正如我所说的,我
本文向大家介绍python实现简单的五子棋游戏,包括了python实现简单的五子棋游戏的使用技巧和注意事项,需要的朋友参考一下 本文实例为大家分享了python实现五子棋游戏的具体代码,供大家参考,具体内容如下 更多有趣的经典小游戏实现专题,分享给大家: C++经典小游戏汇总 python经典小游戏汇总 python俄罗斯方块游戏集合 JavaScript经典游戏 玩不停 javascript经典
本文向大家介绍Java swing五子棋的实现方法,包括了Java swing五子棋的实现方法的使用技巧和注意事项,需要的朋友参考一下 今天给大家介绍一下如何用Java swing实现五子棋的开发即用Java开发图形界面程序五子棋,代码由于太多,只贴部分,最下面会附上下载地址,废话不多说,下面我们先看一下运行结果: 接下来我们看代码: 首先是创建主frame框架界面: 然后再创建子框架界面: 以