当前位置: 首页 > 编程笔记 >

Java多线程的临界资源问题解决方案

丘普松
2023-03-14
本文向大家介绍Java多线程的临界资源问题解决方案,包括了Java多线程的临界资源问题解决方案的使用技巧和注意事项,需要的朋友参考一下

这篇文章主要介绍了Java多线程的临界资源问题解决方案,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下

临界资源问题的原因:某一个线程在对临界资源进行访问时,还没来得及完全修改临界资源的值,临界资源就被其他线程拿去访问,导致多个线程访问同一资源。直观表现为打印结果顺序混乱。

解决方法:加锁

静态方法中用类锁,非静态方法中用对象锁。

1.同步代码段:synchronized(){...}

2.同步方法:使用关键字synchronized修饰的方法

3.使用显式同步锁ReentrantLock

锁池描述的即为锁外等待的状态

方法一:同步代码段:synchronized(){...}

public class SourceConflict {
  public static void main(String[] args) {
    //实例化4个售票员,用4个线程模拟4个售票员
    
    Runnable r = () -> {
      while (TicketCenter.restCount > 0) {
        synchronized(" ") {
          if (TicketCenter.restCount <= 0) {
            return;
          }
          System.out.println(Thread.currentThread().getName() + "卖出一张票,剩余" + --TicketCenter.restCount + "张票");
        }
      }
    };
    
    //用4个线程模拟4个售票员
    Thread thread1 = new Thread(r, "thread-1");
    Thread thread2 = new Thread(r, "thread-2");
    Thread thread3 = new Thread(r, "thread-3");
    Thread thread4 = new Thread(r, "thread-4");
    
    //开启线程
    thread1.start();
    thread2.start();
    thread3.start();
    thread4.start();
    
  }  
}

//实现四名售票员共同售票,资源共享,非独立
//Lambda表达式或匿名内部类内部捕获的局部变量必须显式的声明为 final 或实际效果的的 final 类型,而捕获实例或静态变量是没有限制的
class TicketCenter{
  public static int restCount = 100; 
}

方法二:同步方法,即使用关键字synchronized修饰的方法

public class SourceConflict2 {
  public static void main(String[] args) {
    //实例化4个售票员,用4个线程模拟4个售票员
    
    Runnable r = () -> {
      while (TicketCenter.restCount > 0) {
        sellTicket();
      }
    };
    
    //用4个线程模拟4个售票员
    Thread thread1 = new Thread(r, "thread-1");
    Thread thread2 = new Thread(r, "thread-2");
    Thread thread3 = new Thread(r, "thread-3");
    Thread thread4 = new Thread(r, "thread-4");
    
    //开启线程
    thread1.start();
    thread2.start();
    thread3.start();
    thread4.start();
    
  }
  
  private synchronized static void sellTicket() {  
    if (TicketCenter.restCount <= 0) {
      return;
    }
    System.out.println(Thread.currentThread().getName() + "卖出一张票,剩余" + --TicketCenter.restCount + "张票");
  }
}

class TicketCenter{
  public static int restCount = 100; 
}

方法三:使用显式同步锁ReentrantLock

import java.util.concurrent.locks.ReentrantLock;

public class SourceConflict3 {
  public static void main(String[] args) {
    //实例化4个售票员,用4个线程模拟4个售票员
    
    //显式锁
    ReentrantLock lock = new ReentrantLock();
    Runnable r = () -> {
      while (TicketCenter.restCount > 0) {
        lock.lock();
        if (TicketCenter.restCount <= 0) {
          return;
        }
        System.out.println(Thread.currentThread().getName() + "卖出一张票,剩余" + --TicketCenter.restCount + "张票");
        lock.unlock();
      }
    };
    
    //用4个线程模拟4个售票员
    Thread thread1 = new Thread(r, "thread-1");
    Thread thread2 = new Thread(r, "thread-2");
    Thread thread3 = new Thread(r, "thread-3");
    Thread thread4 = new Thread(r, "thread-4");
    
    //开启线程
    thread1.start();
    thread2.start();
    thread3.start();
    thread4.start();
    
  }  
}
class TicketCenter{
  public static int restCount = 100; 
}

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持小牛知识库。

 类似资料:
  • 本文向大家介绍Java多线程下解决资源竞争的7种方法详解,包括了Java多线程下解决资源竞争的7种方法详解的使用技巧和注意事项,需要的朋友参考一下 前言 一般情况下,只要涉及到多线程编程,程序的复杂性就会显著上升,性能显著下降,BUG出现的概率大大提升。 多线程编程本意是将一段程序并行运行,提升数据处理能力,但是由于大部分情况下都涉及到共有资源的竞争,所以修改资源 对象时必须加锁处理。但是锁的实现

  • 本文向大家介绍java 多线程饥饿现象的问题解决方法,包括了java 多线程饥饿现象的问题解决方法的使用技巧和注意事项,需要的朋友参考一下 java 多线程饥饿现象的问题解决方法 当有线程正在读的时候,不允许写 线程写,但是允许其他的读线程进行读。有写线程正在写的时候,其他的线程不应该读写。为了防止写线程出现饥饿现象,当线程正在读,如果写线程请求写,那么应该禁止再来的读线程进行读。  实现代码如下

  • 主要内容:同步机制的要求临界区是试图访问共享资源的程序的一部分。 该资源可以是计算机中的任何资源,如内存位置,数据结构,CPU或任何IO设备。 临界区不能同时由多个进程执行; 操作系统在允许和禁止进程进入临界区时面临着困难。 临界区问题用于设计一组协议,可以确保进程间的竞争条件永远不会出现。 为了同步协作过程,我们的主要任务是解决临界区问题。 我们需要提供一个解决方案,以满足以下条件。 同步机制的要求 主 1. 相互排斥

  • 如图所示, 位置 2 和位置3 为什么可以访问 位置1 (也就是主线程)的 point 局部变量 ? 毕竟 位置 2 和位置3 是另外两个线程啊 !! 当我加上 第10行代码后,thread1 和 thead2 中都不能访问主线程中的point 了。我知道这是内部类的“事实最终变量” 的限制。 如下图所示,就是我不理解的地方。(在 “栈内存” 层面) 我的猜测:之所以 thread1 和 trea

  • Java 语言通过 synchronized 关键字来保证原子性,这是因为每一个 Object 都有一个隐含的锁,这个也称作监视器对象。在进入 synchronized 之前自动获取此内部锁,而一旦离开此方式,无论是完成或者中断都会自动释放锁。显然这是一个独占锁,每个锁请求之间是互斥的。相对于众多高级锁 (Lock/ReadWriteLock 等),synchronized 的代价都比后者要高。但

  • 1):单线程应用程序只会在用户的CPU上使用1个线程吗?提供更多的线程会使用多个CPU内核吗?如果声明的线程比用户的CPU多,会发生什么?