当前位置: 首页 > 编程笔记 >

Python文本相似性计算之编辑距离详解

顾骏祥
2023-03-14
本文向大家介绍Python文本相似性计算之编辑距离详解,包括了Python文本相似性计算之编辑距离详解的使用技巧和注意事项,需要的朋友参考一下

编辑距离

编辑距离(Edit Distance),又称Levenshtein距离,是指两个字串之间,由一个转成另一个所需的最少编辑操作次数。编辑操作包括将一个字符替换成另一个字符,插入一个字符,删除一个字符。一般来说,编辑距离越小,两个串的相似度越大。

例如将kitten一字转成sitting:('kitten' 和 ‘sitting' 的编辑距离为3)

     sitten (k→s)

     sittin (e→i)

     sitting (→g)

Python中的Levenshtein包可以方便的计算编辑距离

包的安装: pip install python-Levenshtein

我们来使用下:

# -*- coding:utf-8 -*-
import Levenshtein
texta = '艾伦 图灵传'
textb = '艾伦•图灵传'
print Levenshtein.distance(texta,textb)

上面的程序执行结果为3,但是只改了一个字符,为什么会发生这样的情况?

原因是Python将这两个字符串看成string类型,而在 string 类型中,默认的 utf-8 编码下,一个中文字符是用三个字节来表示的。

解决办法是将字符串转换成unicode格式,即可返回正确的结果1。

# -*- coding:utf-8 -*-
import Levenshtein
texta = u'艾伦 图灵传'
textb = u'艾伦•图灵传'
print Levenshtein.distance(texta,textb)

接下来重点介绍下保重几个方法的作用:

Levenshtein.distance(str1, str2)

计算编辑距离(也称Levenshtein距离)。是描述由一个字串转化成另一个字串最少的操作次数,在其中的操作包括插入、删除、替换。算法实现:动态规划。

Levenshtein.hamming(str1, str2)

计算汉明距离。要求str1和str2必须长度一致。是描述两个等长字串之间对应位置上不同字符的个数。

Levenshtein.ratio(str1, str2)

计算莱文斯坦比。计算公式  r = (sum – ldist) / sum, 其中sum是指str1 和 str2 字串的长度总和,ldist是类编辑距离。注意这里是类编辑距离,在类编辑距离中删除、插入依然+1,但是替换+2。

Levenshtein.jaro(s1, s2)

计算jaro距离,Jaro Distance据说是用来判定健康记录上两个名字是否相同,也有说是是用于人口普查,我们先来看一下Jaro Distance的定义。

两个给定字符串S1和S2的Jaro Distance为:


其中的m为s1, s2匹配的字符数,t是换位的数目。

两个分别来自S1和S2的字符如果相距不超过

时,我们就认为这两个字符串是匹配的;而这些相互匹配的字符则决定了换位的数目t,简单来说就是不同顺序的匹配字符的数目的一半即为换位的数目t。举例来说,MARTHA与MARHTA的字符都是匹配的,但是这些匹配的字符中,T和H要换位才能把MARTHA变为MARHTA,那么T和H就是不同的顺序的匹配字符,t=2/2=1。

两个字符串的Jaro Distance即为:


Levenshtein.jaro_winkler(s1, s2)

计算Jaro–Winkler距离,而Jaro-Winkler则给予了起始部分就相同的字符串更高的分数,他定义了一个前缀p,给予两个字符串,如果前缀部分有长度为ι的部分相同,则Jaro-Winkler Distance为:


      dj是两个字符串的Jaro Distance

      ι是前缀的相同的长度,但是规定最大为4

      p则是调整分数的常数,规定不能超过25,不然可能出现dw大于1的情况,Winkler将这个常数定义为0.1

这样,上面提及的MARTHA和MARHTA的Jaro-Winkler Distance为:

dw = 0.944 + (3 * 0.1(1 − 0.944)) = 0.961

个人觉得算法可以完善的点:

      去除停用词(主要是标点符号的影响)

      针对中文进行分析,按照词比较是不是要比按照字比较效果更好?

总结

以上就是这篇文章的全部内容了,希望本文的内容对大家学习或者使用python能有所帮助,如果有疑问大家可以留言交流。

其他参考资料:

https://en.wikipedia.org/wiki/Jaro%E2%80%93Winkler_distance

http://www.coli.uni-saarland.de/courses/LT1/2011/slides/Python-Levenshtein.html#Levenshtein-inverse

 类似资料:
  • 问题内容: 在Python + Sqlite中是否有可用的字符串相似性度量,例如与模块有关? 用例示例: 此查询应匹配ID为1的行,但不匹配ID为2的行: 如何在Sqlite + Python中做到这一点? 关于我到目前为止发现的注释: 该Levenshtein距离,即单字符编辑(插入,删除或替换)的最小数量需要改变一个字到另一个,可能是有用的,但我不知道是否SQLite中存在的正式实施(我看到一

  • 本文向大家介绍编辑距离相关面试题,主要包含被问及编辑距离时的应答技巧和注意事项,需要的朋友参考一下 参考回答: 概念 编辑距离的作用主要是用来比较两个字符串的相似度的 编辑距离,又称Levenshtein距离(莱文斯坦距离也叫做Edit Distance),是指两个字串之间,由一个转成另一个所需的最少编辑操作次数,如果它们的距离越大,说明它们越是不同。许可的编辑操作包括将一个字符替换成另一个字符,

  • 我试图使用Scala类计算两点之间的距离。但它给出了一个错误说 类型不匹配;发现:其他。需要类型(具有基础类型点):?{def x:?}请注意,隐式转换不适用,因为它们是不明确的:在[A](x:A)类型的对象Predef中确保[A]的方法any2Ensuring和在[A](x:A)“ArroAssoc[A]类型的对象Predef中的方法Ani2ArrowasSoc都是可能的其他转换函数。输入到?{

  • 本文向大家介绍Ruby实现的最短编辑距离计算方法,包括了Ruby实现的最短编辑距离计算方法的使用技巧和注意事项,需要的朋友参考一下 利用动态规划算法,实现最短编辑距离的计算。

  • 问题内容: 我需要创建一个类来计算两点之间的距离。我被困住了,我是一个完全的初学者。这是我的课程: 第二课。 我不确定如何在两个定义的点之间获取点对象(中间点)。 我可以创建点对象,但不确定如何通过位于这两个点对象之间的方法返回点对象。 问题答案: 平面上的两个点(x1,y1)和(x2,y2)之间的距离为: 但是,如果您想要的只是两个点的中点,则应将中点函数更改为: 这将返回一个全新的点对象,其点

  • 问题内容: 我从此页面上获取了邮政编码以及它们的经度/纬度等数据库 。它具有以下字段: ZIP,LATITUDE,LONGITUDE,城市,州,县,ZIP_CLASS 数据在文本文件中,但是我将其插入到MySQL表中。我现在的问题是,我如何利用以上字段来计算用户可以在网站上输入的两个邮政编码之间的距离?PHP中的工作代码将不胜感激 问题答案: 您也可以尝试点击网络服务以计算距离。让别人来做繁重的工