当前位置: 首页 > 编程笔记 >

opencv2基于SURF特征提取实现两张图像拼接融合

仲孙阳
2023-03-14
本文向大家介绍opencv2基于SURF特征提取实现两张图像拼接融合,包括了opencv2基于SURF特征提取实现两张图像拼接融合的使用技巧和注意事项,需要的朋友参考一下

本文实例为大家分享了opencv2实现两张图像拼接融合的具体代码,供大家参考,具体内容如下

要用到两个文件,estimate.cpp和matcher.h(在有关鲁棒匹配这篇博文中有)

estimate.cpp的头文件也需要添加一些东西才行,以下是对的,已经成功运行。

加了using namespace std;之后,cv::可以去掉了。

estimate.cpp:

#include <iostream>
#include <vector>
#include <opencv2/core/core.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/features2d/features2d.hpp>
#include <opencv2/calib3d/calib3d.hpp>
#include<opencv2/nonfree/nonfree.hpp>
#include<opencv2\legacy\legacy.hpp> 
#include "matcher.h"
using namespace std;
using namespace cv;
int main()
{
// Read input images读入图像
cv::Mat image1= cv::imread("parliament1.bmp",0);
cv::Mat image2= cv::imread("parliament2.bmp",0);
if (!image1.data || !image2.data)
return 0; 


  // Display the images显示图像
cv::namedWindow("Image 1");
cv::imshow("Image 1",image1);
cv::namedWindow("Image 2");
cv::imshow("Image 2",image2);


// Prepare the matcher准备匹配
RobustMatcher rmatcher;
rmatcher.setConfidenceLevel(0.98);
rmatcher.setMinDistanceToEpipolar(1.0);
rmatcher.setRatio(0.65f);
cv::Ptr<cv::FeatureDetector> pfd= new cv::SurfFeatureDetector(10); 
rmatcher.setFeatureDetector(pfd);


// Match the two images
std::vector<cv::DMatch> matches;
std::vector<cv::KeyPoint> keypoints1, keypoints2;
cv::Mat fundemental= rmatcher.match(image1,image2,matches, keypoints1, keypoints2);


// draw the matches画匹配结果
cv::Mat imageMatches;
cv::drawMatches(image1,keypoints1, // 1st image and its keypoints第一张图像及其关键点
      image2,keypoints2, // 2nd image and its keypoints第二张图像及其关键点
matches, // the matches匹配结果
imageMatches, // the image produced产生的图像
cv::Scalar(255,255,255)); // color of the lines线的颜色
cv::namedWindow("Matches");
cv::imshow("Matches",imageMatches);

// Convert keypoints into Point2f将关键点转换为Point2f
std::vector<cv::Point2f> points1, points2;
for (std::vector<cv::DMatch>::const_iterator it= matches.begin();
it!= matches.end(); ++it) {H


// Get the position of left keypoints得到左图关键点位置
float x= keypoints1[it->queryIdx].pt.x;
float y= keypoints1[it->queryIdx].pt.y;
points1.push_back(cv::Point2f(x,y));
// Get the position of right keypoints得到右图关键点位置
x= keypoints2[it->trainIdx].pt.x;
y= keypoints2[it->trainIdx].pt.y;
points2.push_back(cv::Point2f(x,y));
}


std::cout << points1.size() << " " << points2.size() << std::endl; 


// Find the homography between image 1 and image 2找到图像1和图像2之间的单应性矩阵
std::vector<uchar> inliers(points1.size(),0);
cv::Mat homography= cv::findHomography(
cv::Mat(points1),cv::Mat(points2), // corresponding points对应点
inliers, // outputed inliers matches 输出内点匹配
CV_RANSAC, // RANSAC method   RANSAC 方法
1.);  // max distance to reprojection point到对应点的最大距离


// Draw the inlier points画内点
std::vector<cv::Point2f>::const_iterator itPts= points1.begin();
std::vector<uchar>::const_iterator itIn= inliers.begin();
while (itPts!=points1.end()) {


// draw a circle at each inlier location在每一个内点画一个圈
if (*itIn) 
 cv::circle(image1,*itPts,3,cv::Scalar(255,255,255),2);

++itPts;
++itIn;
}


itPts= points2.begin();
itIn= inliers.begin();
while (itPts!=points2.end()) {


// draw a circle at each inlier location在每一个内点画一个圈
if (*itIn) 
cv::circle(image2,*itPts,3,cv::Scalar(255,255,255),2);

++itPts;
++itIn;
}


  // Display the images with points显示画点的图像
cv::namedWindow("Image 1 Homography Points");
cv::imshow("Image 1 Homography Points",image1);
cv::namedWindow("Image 2 Homography Points");
cv::imshow("Image 2 Homography Points",image2);


// Warp image 1 to image 2变形图像1到图像2
cv::Mat result;
cv::warpPerspective(image1, // input image输入的图像
result, // output image输出的图像
homography, // homography单应性矩阵
cv::Size(2*image1.cols,image1.rows)); // size of output image输出图像的大小


// Copy image 1 on the first half of full image复制图像1的上一部分
cv::Mat half(result,cv::Rect(0,0,image2.cols,image2.rows));
image2.copyTo(half);


  // Display the warp image显示变形后图像
cv::namedWindow("After warping");
cv::imshow("After warping",result);


cv::waitKey();
return 0;
}

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持小牛知识库。

 类似资料:
  • 本文向大家介绍opencv实现多张图像拼接,包括了opencv实现多张图像拼接的使用技巧和注意事项,需要的朋友参考一下 本文实例为大家分享了opencv实现多张图像简单拼接,供大家参考,具体内容如下 效果如下: 以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持呐喊教程。

  • 本文向大家介绍python实现两张图片的像素融合,包括了python实现两张图片的像素融合的使用技巧和注意事项,需要的朋友参考一下 本文实例为大家分享了python实现两张图片像素融合的具体代码,供大家参考,具体内容如下 通过计算两张图片的颜色直方图特征,利用直方图对图片的颜色进行融合。 以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持呐喊教程。

  • 本文向大家介绍OpenCV实现多图像拼接成一张大图,包括了OpenCV实现多图像拼接成一张大图的使用技巧和注意事项,需要的朋友参考一下 本文实例为大家分享了OpenCV实现多图像拼接成大图的具体代码,供大家参考,具体内容如下 开始尝试merge函数,具体如下: 定义四个矩阵A,B,C,D。得到矩阵combine。 结果如下: 显然,不是我们需要的结果。 尝试hconcat和vconcat函数,这两

  • 本文向大家介绍python实现图像拼接,包括了python实现图像拼接的使用技巧和注意事项,需要的朋友参考一下 本文实例为大家分享了python实现图像拼接的具体代码,供大家参考,具体内容如下 1.待拼接的图像 2. 基于SIFT特征点和RANSAC方法得到的图像特征点匹配结果 3.图像变换结果 4.代码及注意事项 以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持呐喊教程。

  • 在机器学习中,灰度图像的特征提取是一个难题。 我有一个灰色的图像,是用这个从彩色图像转换而来的。 我实际上需要从这张灰色图片中提取特征,因为下一部分将训练一个具有该特征的模型,以预测图像的彩色形式。 我们不能使用任何深度学习库 有一些方法,如快速筛选球。。。但我真的不知道如何才能为我的目标提取特征。 以上代码的输出就是真的。 有什么解决方案或想法吗?我该怎么办?

  • 本文向大家介绍python实现多张图片拼接成大图,包括了python实现多张图片拼接成大图的使用技巧和注意事项,需要的朋友参考一下 本文实例为大家分享了python实现多张图片拼接成大图的具体代码,供大家参考,具体内容如下 上次爬取了马蜂窝的游记图片,并解决了PIL模块的导入问题,现在直奔主题吧: 前边设置了很多变量,都很直观,然后时获取图片的名称以及对需要拼接图片的数量进行检查,比如你要拼接5*