theano库是做deep learning重要的一部分,其最吸引人的地方之一是你给出符号化的公式之后,能自动生成导数。本文使用梯度下降的方法,进行数据拟合,现在把代码贴在下方
代码块
import numpy as np import theano.tensor as T import theano import time class Linear_Reg(object): def __init__(self,x): self.a = theano.shared(value = np.zeros((1,), dtype=theano.config.floatX),name = 'a') self.b = theano.shared(value = np.zeros((1,), dtype=theano.config.floatX),name = 'b') self.result = self.a * x + self.b self.params = [self.a,self.b] def msl(self,y): return T.mean((y - self.result)**2) def regrun(rate,data,labels): X = theano.shared(np.asarray(data, dtype=theano.config.floatX),borrow = True) Y = theano.shared(np.asarray(labels, dtype=theano.config.floatX),borrow = True) index = T.lscalar() #定义符号化的公式 x = T.dscalar('x') #定义符号化的公式 y = T.dscalar('y') #定义符号化的公式 reg = Linear_Reg(x = x) cost = reg.msl(y) a_g = T.grad(cost = cost,wrt = reg.a) #计算梯度 b_g = T.grad(cost = cost, wrt = reg.b) #计算梯度 updates=[(reg.a,reg.a - rate * a_g),(reg.b,reg.b - rate * b_g)] #更新参数 train_model = theano.function(inputs=[index], outputs = reg.msl(y),updates = updates,givens = {x:X[index], y:Y[index]}) done = True err = 0.0 count = 0 last = 0.0 start_time = time.clock() while done: #err_s = [train_model(i) for i in xrange(data.shape[0])] for i in xxx: err_s = [train_model(i) ] err = np.mean(err_s) #print err count = count + 1 if count > 10000 or err <0.1: done = False last = err end_time = time.clock() print 'Total time is :',end_time -start_time,' s' # 5.12s print 'last error :',err print 'a value : ',reg.a.get_value() # [ 2.92394467] print 'b value : ',reg.b.get_value() # [ 1.81334458] if __name__ == '__main__': rate = 0.01 data = np.linspace(1,10,10) labels = data * 3 + np.ones(data.shape[0],dtype=np.float64) +np.random.rand(data.shape[0]) regrun(rate,data,labels)
其基本思想是随机梯度下降。
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持小牛知识库。
这就是Keras Keras是一个高层神经网络库,Keras由纯Python编写而成并基Tensorflow或Theano。Keras 为支持快速实验而生,能够把你的idea迅速转换为结果,如果你有如下需求,请选择Keras: 简易和快速的原型设计(keras具有高度模块化,极简,和可扩充特性) 支持CNN和RNN,或二者的结合 支持任意的链接方案(包括多输入和多输出训练) 无缝CPU和GPU切换
我正在研究Pytorch的线性回归问题 我在单变量情况下取得了成功,但是当我执行多变量线性回归时,我得到了以下错误。我应该如何执行多变量线性回归? TypeError Traceback(最近调用最后一次)in()9optimizer.zero_grad()#渐变10输出=模型(输入)#输出--- /anaconda/envs/tensorflow/lib/python3.6/site-packa
我正在运行我在buitin网站上看到的一个关于张量流线性回归的代码,它总是给我一个错误,我不知道代码有什么问题。首先我以为这是我的ide,然后当我切换到jupyter实验室时,它显示了我在这一点上的错误 首先我以为这是我的ide,然后当我切换到jupyter实验室时,它显示了我在这一点上的错误
我想在Python中使用与在MATLAB中使用mvregress相同的函数或方法。例如,我们有输入和输出。使用此函数后,我们应该得到一些估计回归系数。Python有这种能力吗?
本文向大家介绍关于多元线性回归分析——Python&SPSS,包括了关于多元线性回归分析——Python&SPSS的使用技巧和注意事项,需要的朋友参考一下 原始数据在这里 1.观察数据 首先,用Pandas打开数据,并进行观察。 会看到数据如下所示: 这份数据代表了一个循环发电厂,每个数据有5列,分别是:AT(温度), V(压力), AP(湿度), RH(压强), PE(输出电力)。我们不用纠结于
我有一个经过训练的网络,它由以下层组成:{con1, pool1, con2, pool2, con3, pool3, con4, pool4, fc5, fc6,输出}fc表示完全连接的层,conv表示卷积层。 我需要做一些图像的特征提取。我用的是千层面和意大利面。我需要保存每个层的特征,以便以后进行分析。我是这门语言的新手,所以我试图找到关于这门语言的示例代码或教程(使用theano/lasa