在对变量分箱后,需要计算变量的重要性,IV是评估变量区分度或重要性的统计量之一,python计算IV值的代码如下:
def CalcIV(Xvar, Yvar): N_0 = np.sum(Yvar==0) N_1 = np.sum(Yvar==1) N_0_group = np.zeros(np.unique(Xvar).shape) N_1_group = np.zeros(np.unique(Xvar).shape) for i in range(len(np.unique(Xvar))): N_0_group[i] = Yvar[(Xvar == np.unique(Xvar)[i]) & (Yvar == 0)].count() N_1_group[i] = Yvar[(Xvar == np.unique(Xvar)[i]) & (Yvar == 1)].count() iv = np.sum((N_0_group/N_0 - N_1_group/N_1) * np.log((N_0_group/N_0)/(N_1_group/N_1))) return iv def caliv_batch(df, Kvar, Yvar): df_Xvar = df.drop([Kvar, Yvar], axis=1) ivlist = [] for col in df_Xvar.columns: iv = CalcIV(df[col], df[Yvar]) ivlist.append(iv) names = list(df_Xvar.columns) iv_df = pd.DataFrame({'Var': names, 'Iv': ivlist}, columns=['Var', 'Iv']) return iv_df
其中,df是分箱后的数据集,Kvar是主键,Yvar是y变量(0是好,1是坏)。
代码运行结果如下:
补充拓展:python基础IV(切片、迭代、生成列表)
对list进行切片
取一个list的部分元素是非常常见的操作。比如,一个list如下:
>>> L = ['Adam', 'Lisa', 'Bart', 'Paul']
取前3个元素,应该怎么做?
笨办法:
>>> [L[0], L[1], L[2]]
['Adam', 'Lisa', 'Bart']
之所以是笨办法是因为扩展一下,取前N个元素就没辙了。
取前N个元素,也就是索引为0-(N-1)的元素,可以用循环:
>>> r = [] >>> n = 3 >>> for i in range(n): ... r.append(L[i]) ... >>> r ['Adam', 'Lisa', 'Bart']
对这种经常取指定索引范围的操作,用循环十分繁琐,因此,Python提供了切片(Slice)操作符,能大大简化这种操作。
对应上面的问题,取前3个元素,用一行代码就可以完成切片:
>>> L[0:3]
['Adam', 'Lisa', 'Bart']
L[0:3]表示,从索引0开始取,直到索引3为止,但不包括索引3。即索引0,1,2,正好是3个元素。
如果第一个索引是0,还可以省略:
>>> L[:3]
['Adam', 'Lisa', 'Bart']
也可以从索引1开始,取出2个元素出来:
>>> L[1:3]
['Lisa', 'Bart']
只用一个 : ,表示从头到尾:
>>> L[:]
['Adam', 'Lisa', 'Bart', 'Paul']
因此,L[:]实际上复制出了一个新list。
切片操作还可以指定第三个参数:
>>> L[::2]
['Adam', 'Bart']
第三个参数表示每N个取一个,上面的 L[::2] 会每两个元素取出一个来,也就是隔一个取一个。
把list换成tuple,切片操作完全相同,只是切片的结果也变成了tuple。
倒序切片
对于list,既然Python支持L[-1]取倒数第一个元素,那么它同样支持倒数切片,试试:
>>> L = ['Adam', 'Lisa', 'Bart', 'Paul'] >>> L[-2:] ['Bart', 'Paul'] >>> L[:-2] ['Adam', 'Lisa'] >>> L[-3:-1] ['Lisa', 'Bart'] >>> L[-4:-1:2] ['Adam', 'Bart']
记住倒数第一个元素的索引是-1。倒序切片包含起始索引,不包含结束索引。
对字符串切片
字符串 'xxx'和 Unicode字符串 u'xxx'也可以看成是一种list,每个元素就是一个字符。因此,字符串也可以用切片操作,只是操作结果仍是字符串:
>>> 'ABCDEFG'[:3] 'ABC' >>> 'ABCDEFG'[-3:] 'EFG' >>> 'ABCDEFG'[::2] 'ACEG'
在很多编程语言中,针对字符串提供了很多各种截取函数,其实目的就是对字符串切片。Python没有针对字符串的截取函数,只需要切片一个操作就可以完成,非常简单。
什么是迭代
在Python中,如果给定一个list或tuple,我们可以通过for循环来遍历这个list或tuple,这种遍历我们成为迭代(Iteration)。
在Python中,迭代是通过 for ... in 来完成的,而很多语言比如C或者Java,迭代list是通过下标完成的,比如Java代码:
for (i=0; i<list.length; i++) { n = list[i]; }
可以看出,Python的for循环抽象程度要高于Java的for循环。
因为 Python 的 for循环不仅可以用在list或tuple上,还可以作用在其他任何可迭代对象上。
因此,迭代操作就是对于一个集合,无论该集合是有序还是无序,我们用 for 循环总是可以依次取出集合的每一个元素。
注意: 集合是指包含一组元素的数据结构,我们已经介绍的包括:
1. 有序集合:list,tuple,str和unicode;
2. 无序集合:set
3. 无序集合并且具有 key-value 对:dict
而迭代是一个动词,它指的是一种操作,在Python中,就是 for 循环。
迭代与按下标访问数组最大的不同是,后者是一种具体的迭代实现方式,而前者只关心迭代结果,根本不关心迭代内部是如何实现的。
索引迭代
Python中,迭代永远是取出元素本身,而非元素的索引。
对于有序集合,元素确实是有索引的。有的时候,我们确实想在 for 循环中拿到索引,怎么办?
方法是使用 enumerate() 函数:
>>> L = ['Adam', 'Lisa', 'Bart', 'Paul'] >>> for index, name in enumerate(L): ... print index, '-', name ... 0 - Adam 1 - Lisa 2 - Bart 3 - Paul
使用 enumerate() 函数,我们可以在for循环中同时绑定索引index和元素name。但是,这不是 enumerate() 的特殊语法。实际上,enumerate() 函数把:
['Adam', 'Lisa', 'Bart', 'Paul']
变成了类似:
[(0, 'Adam'), (1, 'Lisa'), (2, 'Bart'), (3, 'Paul')]
因此,迭代的每一个元素实际上是一个tuple:
for t in enumerate(L): index = t[0] name = t[1] print index, '-', name
如果我们知道每个tuple元素都包含两个元素,for循环又可以进一步简写为:
for index, name in enumerate(L):
print index, '-', name
这样不但代码更简单,而且还少了两条赋值语句。
可见,索引迭代也不是真的按索引访问,而是由 enumerate() 函数自动把每个元素变成 (index, element) 这样的tuple,再迭代,就同时获得了索引和元素本身。
迭代dict的value
我们已经了解了dict对象本身就是可迭代对象,用 for 循环直接迭代 dict,可以每次拿到dict的一个key。
如果我们希望迭代 dict 对象的value,应该怎么做?
dict 对象有一个 values() 方法,这个方法把dict转换成一个包含所有value的list,这样,我们迭代的就是 dict的每一个 value:
d = { 'Adam': 95, 'Lisa': 85, 'Bart': 59 } print d.values() # [85, 95, 59] for v in d.values(): print v # 85 # 95 # 59
如果仔细阅读Python的文档,还可以发现,dict除了values()方法外,还有一个 itervalues() 方法,用 itervalues() 方法替代 values() 方法,迭代效果完全一样:
d = { 'Adam': 95, 'Lisa': 85, 'Bart': 59 } print d.itervalues() # <dictionary-valueiterator object at 0x106adbb50> for v in d.itervalues(): print v # 85 # 95 # 59
那这两个方法有何不同之处呢?
1. values() 方法实际上把一个 dict 转换成了包含 value 的list。
2. 但是 itervalues() 方法不会转换,它会在迭代过程中依次从 dict 中取出 value,所以 itervalues() 方法比 values() 方法节省了生成 list 所需的内存。
3. 打印 itervalues() 发现它返回一个 <dictionary-valueiterator> 对象,这说明在Python中,for 循环可作用的迭代对象远不止 list,tuple,str,unicode,dict等,任何可迭代对象都可以作用于for循环,而内部如何迭代我们通常并不用关心。
如果一个对象说自己可迭代,那我们就直接用 for 循环去迭代它,可见,迭代是一种抽象的数据操作,它不对迭代对象内部的数据有任何要求。
迭代dict的key和value
我们了解了如何迭代 dict 的key和value,那么,在一个 for 循环中,能否同时迭代 key和value?答案是肯定的。
首先,我们看看 dict 对象的 items() 方法返回的值:
>>> d = { 'Adam': 95, 'Lisa': 85, 'Bart': 59 } >>> print d.items() [('Lisa', 85), ('Adam', 95), ('Bart', 59)]
可以看到,items() 方法把dict对象转换成了包含tuple的list,我们对这个list进行迭代,可以同时获得key和value:
>>> for key, value in d.items(): ... print key, ':', value ... Lisa : 85 Adam : 95 Bart : 59
和 values() 有一个 itervalues() 类似, items() 也有一个对应的 iteritems(),iteritems() 不把dict转换成list,而是在迭代过程中不断给出 tuple,所以, iteritems() 不占用额外的内存。
生成列表
要生成list [1, 2, 3, 4, 5, 6, 7, 8, 9, 10],我们可以用range(1, 11):
>>> range(1, 11)
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
但如果要生成[1x1, 2x2, 3x3, ..., 10x10]怎么做?方法一是循环:
>>> L = [] >>> for x in range(1, 11): ... L.append(x * x) ... >>> L [1, 4, 9, 16, 25, 36, 49, 64, 81, 100]
但是循环太繁琐,而列表生成式则可以用一行语句代替循环生成上面的list:
>>> [x * x for x in range(1, 11)] [1, 4, 9, 16, 25, 36, 49, 64, 81, 100]
这种写法就是Python特有的列表生成式。利用列表生成式,可以以非常简洁的代码生成 list。
写列表生成式时,把要生成的元素 x * x 放到前面,后面跟 for 循环,就可以把list创建出来,十分有用,多写几次,很快就可以熟悉这种语法。
复杂表达式
使用for循环的迭代不仅可以迭代普通的list,还可以迭代dict。
假设有如下的dict:
d = { 'Adam': 95, 'Lisa': 85, 'Bart': 59 }
完全可以通过一个复杂的列表生成式把它变成一个 HTML 表格:
tds = ['<tr><td>%s</td><td>%s</td></tr>' % (name, score) for name, score in d.iteritems()] print '<table>' print '<tr><th>Name</th><th>Score</th><tr>' print '\n'.join(tds) print '</table>'
注:字符串可以通过 % 进行格式化,用指定的参数替代 %s。字符串的join()方法可以把一个 list 拼接成一个字符串。
条件过滤
列表生成式的 for 循环后面还可以加上 if 判断。例如:
>>> [x * x for x in range(1, 11)]
[1, 4, 9, 16, 25, 36, 49, 64, 81, 100]
如果我们只想要偶数的平方,不改动 range()的情况下,可以加上 if 来筛选:
>>> [x * x for x in range(1, 11) if x % 2 == 0]
[4, 16, 36, 64, 100]
有了 if 条件,只有 if 判断为 True 的时候,才把循环的当前元素添加到列表中。
多层表达式
for循环可以嵌套,因此,在列表生成式中,也可以用多层 for 循环来生成列表。
对于字符串 'ABC' 和 '123',可以使用两层循环,生成全排列:
>>> [m + n for m in 'ABC' for n in '123']
['A1', 'A2', 'A3', 'B1', 'B2', 'B3', 'C1', 'C2', 'C3']
翻译成循环代码就像下面这样:
L = [] for m in 'ABC': for n in '123': L.append(m + n)
以上这篇Python计算IV值的示例讲解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持呐喊教程。
本文向大家介绍举例讲解Python中的算数运算符的用法,包括了举例讲解Python中的算数运算符的用法的使用技巧和注意事项,需要的朋友参考一下 下表列出了所有Python语言支持的算术运算符。假设变量a持有10和变量b持有20,则: 例子: 试试下面的例子就明白了所有的Python编程语言提供了算术运算符: #!/usr/bin/python a = 21 b = 10 c = 0 c = a
本文向大家介绍Python 多核并行计算的示例代码,包括了Python 多核并行计算的示例代码的使用技巧和注意事项,需要的朋友参考一下 以前写点小程序其实根本不在乎并行,单核跑跑也没什么问题,而且我的电脑也只有双核四个超线程(下面就统称核好了),觉得去折腾并行没啥意义(除非在做IO密集型任务)。然后自从用上了32核128GB内存,看到 htop 里面一堆空载的核,很自然地就会想这个并行必须去折腾一
问题内容: 我需要一些易于实现的单个cpu和内存密集型计算,可以用Java为测试线程调度程序编写这些计算。 它们应该花费一些时间,但是更重要的是消耗资源。 有任何想法吗? 问题答案: CPU密集型任务的一些简单示例: 搜索质数(涉及许多BigInteger部门) 计算大阶乘,例如2000!((涉及许多BigInteger乘法) 许多Math.tan()计算(这很有趣,因为Math.tan是本机的,
本文向大家介绍python实现关键词提取的示例讲解,包括了python实现关键词提取的示例讲解的使用技巧和注意事项,需要的朋友参考一下 新人小菜鸟又来写博客啦!!!没人表示不开心~~(>_<)~~ 今天我来弄一个简单的关键词提取的代码 文章内容关键词的提取分为三大步: (1) 分词 (2) 去停用词 (3) 关键词提取 分词方法有很多,我这里就选择常用的结巴jieba分词;去停用词,我用了一个停用
本文向大家介绍WPF MVVM示例讲解,包括了WPF MVVM示例讲解的使用技巧和注意事项,需要的朋友参考一下 在没给大家讲解wpf mwm示例之前先给大家简单说下MVVM理论知识: WPF技术的主要特点是数据驱动UI,所以在使用WPF技术开发的过程中是以数据为核心的,WPF提供了数据绑定机制,当数据发生变化时,WPF会自动发出通知去更新UI。 我们使用模式,一般是想达到高内聚低耦合。在WPF
本文向大家介绍Python PyQt5实现的简易计算器功能示例,包括了Python PyQt5实现的简易计算器功能示例的使用技巧和注意事项,需要的朋友参考一下 本文实例讲述了Python PyQt5实现的简易计算器功能。分享给大家供大家参考,具体如下: 这里剩下计算函数(self.calculator)未实现,有兴趣的朋友可以实现它 【知识点】 1、利用循环添加按钮部件,及给每个按钮设置信号/槽