我有一组节点和它们之间的一组有向边。边缘没有重量。
我怎样才能找到使图强连接所必须添加的最小数量的边(即从每个结点到所有其他结点都应该有一条路径)?这个问题有名字吗?
这是一个非常经典的图问题。
我有一个强连通图。我想移除一个边并检查是否仍然保持强连接。因为我将N=图中节点的总数取为10,并且我感兴趣的大多数图都有25条以上的边,所以很难检查一次使用一条,去掉边。 如何解决这个问题?多谢了。
考虑一个不连通的有向图的例子,其中顶点和边其中顶点是孤立的。 根据这里的答案:(对强连通图的最小加法),保证这个图所需的最小边数结果是3。 如何找到将这些边添加到哪里,即图中一条边的起始点和终止点?
我在读关于BFS和DFS的图算法。当我在分析用DFS寻找图中强连通分量的算法时,我产生了一个疑问。为了寻找强连通分量,book(Coremen)首先在图上运行DFS,以得到顶点的完成时间,然后在图的转置上按照第一个DFS得到的完成时间的递减顺序运行DFS。但是我不能理解为什么第二个DFS必须按照完成时间运行。我的意思是,即使我们直接在图的转置上运行DFS(忽略完成时间),它也会给我们连接的组件吗?
我想在无向图中找到一个强连通分量,即如果我从一个节点开始,那么我将回到节点,并且每个边都被精确地访问一次。 对于有向图,可以用Tarjan算法求强连通分量,但是对于无向图,该怎么办。
输出应该如下所示: 我甚至不知道为什么会有这样的错误。我将代码从https://www.geeksforgeeks.org/tarjan-algorithm-find-strong-connected-components/改为我的代码,并添加了input机会。我问过这个问题,一个朋友说:“这是addEdge方法中添加w后的两个代码的输出,在您的代码中w添加到所有元素中,而在原始代码中只添加到图V