对于我的教育,我正在尝试在卷积神经网络中实现一个N维卷积层。
我想实现一个反向传播html" target="_blank">函数。然而,我不确定这样做最有效的方式。
目前,我正在使用信号。fftconvolve收件人:
>
在反向传播步骤中,使用数组卷积导数(在所有维度上使用FlipAllAxes函数进行反转)(https://jefkine.com/general/2016/09/05/backpropagation-in-convolutional-neural-networks/)对所有筛选器进行汇总。我的输出是每个图像与每个滤波器的每个导数的卷积之和。
我对如何卷积导数特别困惑。使用下面的类进行反向传播会导致权重大小爆炸。
编程导数与输出和滤波器的卷积的正确方法是什么?
编辑:
根据这篇论文(通过FFTs快速训练卷积网络),这篇论文正是我想要做的:
>
前一层的导数由当前层的导数与权重的卷积给出:
dL/dy\U f=dL/dx*w\U f^T
权重的导数是导数与原始输入的卷积的分段和:
dL/dy=dL/dx*x
我已经尽我所知最好地实现了以下内容。然而,这似乎并没有给出预期的结果,因为我使用这一层编写的网络在训练期间表现出剧烈的波动。
import numpy as np
from scipy import signal
class ConvNDLayer:
def __init__(self,channels, kernel_size, dim):
self.channels = channels
self.kernel_size = kernel_size;
self.dim = dim
self.last_input = None
self.filt_dims = np.ones(dim+1).astype(int)
self.filt_dims[1:] = self.filt_dims[1:]*kernel_size
self.filt_dims[0]= self.filt_dims[0]*channels
self.filters = np.random.randn(*self.filt_dims)/(kernel_size)**dim
def FlipAllAxes(self, array):
sl = slice(None,None,-1)
return array[tuple([sl]*array.ndim)]
def ViewAsWindows(self, array, window_shape, step=1):
# -- basic checks on arguments
if not isinstance(array, cp.ndarray):
raise TypeError("`array` must be a Cupy ndarray")
ndim = array.ndim
if isinstance(window_shape, numbers.Number):
window_shape = (window_shape,) * ndim
if not (len(window_shape) == ndim):
raise ValueError("`window_shape` is incompatible with `arr_in.shape`")
if isinstance(step, numbers.Number):
if step < 1:
raise ValueError("`step` must be >= 1")
step = (step,) * ndim
if len(step) != ndim:
raise ValueError("`step` is incompatible with `arr_in.shape`")
arr_shape = array.shape
window_shape = np.asarray(window_shape, dtype=arr_shape.dtype))
if ((arr_shape - window_shape) < 0).any():
raise ValueError("`window_shape` is too large")
if ((window_shape - 1) < 0).any():
raise ValueError("`window_shape` is too small")
# -- build rolling window view
slices = tuple(slice(None, None, st) for st in step)
window_strides = array.strides
indexing_strides = array[slices].strides
win_indices_shape = (((array.shape -window_shape)
// step) + 1)
new_shape = tuple(list(win_indices_shape) + list(window_shape))
strides = tuple(list(indexing_strides) + list(window_strides))
arr_out = as_strided(array, shape=new_shape, strides=strides)
return arr_out
def UnrollAxis(self, array, axis):
# This so it works with a single dimension or a sequence of them
axis = cp.asnumpy(cp.atleast_1d(axis))
axis2 = cp.asnumpy(range(len(axis)))
# Put unrolled axes at the beginning
array = cp.moveaxis(array, axis,axis2)
# Unroll
return array.reshape((-1,) + array.shape[len(axis):])
def Forward(self, array):
output_shape =cp.zeros(array.ndim + 1)
output_shape[1:] = cp.asarray(array.shape)
output_shape[0]= self.channels
output_shape = output_shape.astype(int)
output = cp.zeros(cp.asnumpy(output_shape))
self.last_input = array
for i, kernel in enumerate(self.filters):
conv = self.Convolve(array, kernel)
output[i] = conv
return output
def Backprop(self, d_L_d_out, learn_rate):
d_A= cp.zeros_like(self.last_input)
d_W = cp.zeros_like(self.filters)
for i, (kernel, d_L_d_out_f) in enumerate(zip(self.filters, d_L_d_out)):
d_A += signal.fftconvolve(d_L_d_out_f, kernel.T, "same")
conv = signal.fftconvolve(d_L_d_out_f, self.last_input, "same")
conv = self.ViewAsWindows(conv, kernel.shape)
axes = np.arange(kernel.ndim)
conv = self.UnrollAxis(conv, axes)
d_W[i] = np.sum(conv, axis=0)
output = d_A*learn_rate
self.filters = self.filters - d_W*learn_rate
return output
将梯度与learn\u rate相乘通常是不够的。
为了更好的性能和减少严重的波动,使用优化器通过除以过去的几个梯度(RMSprop)等方法缩放梯度。
更新还取决于错误,如果您单独传递每个样本的错误,通常会产生噪音,因此最好对多个样本(小批量)进行平均。
图像的卷积(Convolution)定义为 $$f(x) = act(\sum{i, j}^n \theta{(n - i)(n - j)} x_{ij}+b)$$ 其计算过程为 示例1 import tensorflow as tf import numpy as np sess = tf.InteractiveSession() input_batch = tf.constant([
卷积神经网络有一个批量过滤器, 持续不断的在图片上滚动收集图片里的信息,每一次收集的时候都只是收集一小块像素区域, 然后把收集来的信息进行整理, 这时候整理出来的信息有了一些实际上的呈现, 比如这时的神经网络能看到一些边缘的图片信息, 然后在以同样的步骤, 用类似的批量过滤器扫过产生的这些边缘信息, 神经网络从这些边缘信息里面总结出更高层的信息结构,比如说总结的边缘能够画出眼睛,鼻子等等. 再经过
Convolution1D层 keras.layers.convolutional.Convolution1D(nb_filter, filter_length, init='uniform', activation='linear', weights=None, border_mode='valid', subsample_length=1, W_regularizer=None, b_regu
Conv1D层 keras.layers.convolutional.Conv1D(filters, kernel_size, strides=1, padding='valid', dilation_rate=1, activation=None, use_bias=True, kernel_initializer='glorot_uniform', bias_initializer='zero
下午好在第一阶段,在卷积神经网络(输入层)的输入上,我们接收一个源图像(因此是手写英文字母的图像)。首先,我们使用一个从左到右的nxn窗口来扫描图像并在内核(卷积矩阵)上乘法来构建特征映射?但没有人写过内核应该具有什么样的精确值(换句话说,我应该将从n*n窗口检索到的数据相乘到什么样的内核值)。是否适合在这个用于边缘检测的卷积核上乘以数据?有许多卷积核(浮雕、高斯滤波器、边缘检测、角度检测等)?但
该网络用于预测包含移动方块的人工生成的电影的下一帧。 from keras.models import Sequential from keras.layers.convolutional import Conv3D from keras.layers.convolutional_recurrent import ConvLSTM2D from keras.layers.normalization