我试图基于GTSRB数据集(下面给出的链接)制作一个CNN模型,但我面临以下错误:
当我设置input\u shape=input\u shape=(3,IMG\u SIZE,IMG\u SIZE)时,我得到以下错误:
ValueError:检查输入时出错:预期conv2d\u 34\u输入有4个维度,但得到了具有形状的数组(9030,1)
当我研究这个问题时,我发现一个解决方案可能是将batch_size作为参数传递,当我尝试时,我得到了这个错误:
ValueError:输入0与层conv2d\U 40不兼容:预期ndim=4,发现ndim=5
当我试图重塑training_images时,我得到了这个错误:
ValueError:无法将大小为9030的数组重塑为形状(48,48,3)
代码片段:加载培训数据集:
import csv
# Training dataset
def readTrafficSignsTrain(rootpath):
'''Reads traffic sign data for German Traffic Sign Recognition Benchmark.
Arguments: path to the traffic sign data, for example './GTSRB/Training'
Returns: list of images, list of corresponding labels'''
images = [] # images
labels = [] # corresponding labels
# loop over all 42 classes
for c in range(0,43):
# prefix = rootpath + '/' + format(c, '05d') + '/' # subdirectory for class
# annFile = open(prefix + 'GT-'+ format(c, '05d') + '.csv') # annotations file
prefix = rootpath + '/00000' + '/'
annFile = open(prefix + 'GT-00000' + '.csv')
annReader = csv.reader(annFile, delimiter=';') # csv parser for annotations file
next(annReader, None) # skip header
# loop over all images in current annotations file
for row in annReader:
images.append(plt.imread(prefix + row[0])) # the 1st column is the filename
labels.append(row[7]) # the 8th column is the label
annFile.close()
return images, labels
training_images, training_labels = readTrafficSignsTrain('./GTSRB/Training')
这里有一个问题,图像形状不一样,例如
print(len(training_images))
print(len(training_labels))
print()
print(training_images[0].shape)
print(training_images[20].shape)
print(training_images[200].shape)
print(training_images[2000].shape)
输出
9030 9030
(30, 29, 3) (54, 57, 3) (69, 63, 3) (52, 51, 3)
层设置(从下面链接的Keras留档复制粘贴):
IMG_SIZE = 48
NUM_CLASSES = 43
K.set_image_data_format('channels_first')
batch_size = 32
def cnn_model():
model = Sequential()
model.add(Conv2D(32, (3, 3), padding='same',
input_shape=(3, IMG_SIZE, IMG_SIZE),
activation='relu',
data_format="channels_first"))
model.add(Conv2D(32, (3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2), data_format="channels_first"))
model.add(Dropout(0.2))
model.add(Conv2D(64, (3, 3), padding='same',
activation='relu'))
model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.2))
model.add(Conv2D(128, (3, 3), padding='same',
activation='relu'))
model.add(Conv2D(128, (3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.2))
model.add(Flatten())
model.add(Dense(512, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(NUM_CLASSES, activation='softmax'))
return model
model = cnn_model()
培训模型(仅model.fit暂时适用
import numpy
trim = numpy.array(training_images)
trlb = numpy.array(training_labels)
print(training_images[0].shape)
print(trim.shape)
trim - trim.reshape(48, 48, 3)
model.fit(trim, trlb, epochs = 30, batch_size = 32)
输出
ValueError:无法将大小为9030的数组重塑为形状(48,48,3)
当我移除重塑时
ValueError:检查输入时出错:预期conv2d\u 41\u输入有4个维度,但得到了具有形状的数组(9030,1)
当我改用这个的时候
model.fit(training_images, training_labels, epochs = 30, batch_size = 32)
输出
> ValueError: Error when checking model input: the list of Numpy arrays
> that you are passing to your model is not the size the model expected.
> Expected to see 1 array(s), but instead html" target="_blank">got the following list of 9030
> arrays: [array([[[ 75, 78, 80],
> [ 74, 76, 78],
> [ 86, 87, 84],
> ...,
> [ 68, 75, 75],
> [ 65, 69, 68],
> [ 66, 67, 66]],
>
> [[ 83, 84, 86],
> [...
所以,如果我这样做(不知道为什么)
for i in range(len(training_images)):
model.fit(training_images[i], training_labels[i], epochs = 30, batch_size = 32)
我得到
ValueError:检查输入时出错:预期conv2d_41_input有4个维度,但得到了带有形状(30,29,3)的数组
这就是
input_shape=(3, IMG_SIZE, IMG_SIZE)
如果我让
input_shape=(batch_size, 3, IMG_SIZE, IMG_SIZE)
我明白了
ValueError:输入0与层conv2d\U 47不兼容:预期ndim=4,发现ndim=5
模型的输出。摘要()
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
conv2d_34 (Conv2D) (None, 32, 48, 48) 896
_________________________________________________________________
conv2d_35 (Conv2D) (None, 32, 46, 46) 9248
_________________________________________________________________
max_pooling2d_14 (MaxPooling (None, 32, 23, 23) 0
_________________________________________________________________
dropout_14 (Dropout) (None, 32, 23, 23) 0
_________________________________________________________________
conv2d_36 (Conv2D) (None, 64, 23, 23) 18496
_________________________________________________________________
conv2d_37 (Conv2D) (None, 64, 21, 21) 36928
_________________________________________________________________
max_pooling2d_15 (MaxPooling (None, 64, 10, 10) 0
_________________________________________________________________
dropout_15 (Dropout) (None, 64, 10, 10) 0
_________________________________________________________________
conv2d_38 (Conv2D) (None, 128, 10, 10) 73856
_________________________________________________________________
conv2d_39 (Conv2D) (None, 128, 8, 8) 147584
_________________________________________________________________
max_pooling2d_16 (MaxPooling (None, 128, 4, 4) 0
_________________________________________________________________
dropout_16 (Dropout) (None, 128, 4, 4) 0
_________________________________________________________________
flatten_4 (Flatten) (None, 2048) 0
_________________________________________________________________
dense_10 (Dense) (None, 512) 1049088
_________________________________________________________________
dropout_17 (Dropout) (None, 512) 0
_________________________________________________________________
dense_11 (Dense) (None, 43) 22059
=================================================================
Total params: 1,358,155
Trainable params: 1,358,155
Non-trainable params: 0
_________________________________________________________________
None
如果有人能帮忙,那将不胜感激。
链接GTSRB:http://benchmark.ini.rub.de/?section=gtsrb
github上完整项目的链接:https://github.com/PavlySz/TSR-Project
谢谢
你不能把np.array改造成一个不允许的东西
import numpy as np
img_arr = np.array([np.ones((30, 29, 3)),
np.ones((54, 57, 3)),
np.ones((69, 63, 3)),
np.ones((52, 51, 3))])
print(img_arr.shape)
import cv2
img_arr_conv = np.array([cv2.resize(img, dsize=(48, 48)) for img in img_arr])
print(img_arr_conv.shape)
>>>(4,)
>>>(4, 48, 48, 3)
您得到的是值错误:无法将大小为9030的数组重塑为形状(48,48,3),因为如果元素的大小都不同,numpy无法推断数组的尺寸,并且无法重塑尺寸不允许的数组。值错误的情况也是如此:检查输入时出错:预期conv2d\u 41\u输入有4个维度,但得到的数组具有形状(9030,1)。Numpy只知道数组中有9030个元素。它不能做更多的事情,因为元素的所有维度都是不同的
示例
img_arr_bad = np.array([np.ones((30, 29, 3)),
np.ones((54, 57, 3)),
np.ones((69, 63, 3)),
np.ones((52, 51, 3))])
img_arr_good = np.array([np.ones((48, 48, 3)),
np.ones((48, 48, 3)),
np.ones((48, 48, 3)),
np.ones((48, 48, 3))])
print(img_arr_bad.shape)
print(img_arr_good.shape)
>>>(4,)
>>>(4, 48, 48, 3)
希望这有帮助
问题内容: 我已经检查了所有解决方案,但仍然遇到相同的错误。我的训练图像形状是,我相信它是4维的,但是我不知道为什么错误显示它是5维的。 所以这就是我的定义 问题答案: 问题是。 它实际上应该仅包含3个维度。内部keras将添加批次尺寸使其成为4。 由于您可能使用了4维(包括批处理),因此keras将添加5维。 您应该使用。
我正在使用下面的代码使用GRU预测下一个单词。 低于异常。请帮我解决这个问题?? AttributeError Traceback(最近一次调用),在- c:\ users \ dixit \ appdata \ local \ programs \ python \ python 38 \ lib \ site-packages \ keras \ engine \ training . py
我在Jupyter Notebook中运行Keras神经网络模型(Python 3.6) 我得到以下错误 属性错误:列表对象没有属性ndim 从K调用. fi()方法后eras.model 我检查了Keras的requirements.txt文件(在Anaconda3中),Numpy、smpy和六个模块版本都是最新的。 什么可以解释这个属性错误? 完整的错误消息如下(似乎与Numpy有些关联):
我正在尝试微调VGG16神经网络,下面是代码: 我得到这个错误: ValueError Traceback(最近一次调用上次)位于 2型号。添加(vgg16\U型号) 3#添加完全连接的层: ---- 5型号。添加(密集(256,激活='relu')) 6型号。添加(辍学(0.5)) /usr/local/anaconda/lib/python3.6/site-packages/keras/eng
我试图从教程中在<code>python。我的代码可能有什么错误,如下所示?我感谢你的支持。 法典:
我不断地得到这个错误,我并没有试图解决它。 包bonuscalc; 导入java.text.DecimalFormat;导入java.util.scanner; 公共类BonusCalc{/***@param args命令行参数*/public static void main(String[]args){ }