我的计算机使用Intel显卡运行Ubuntu 16.04。我的OpenGL配置文件使用Mesa 11.2。
我简陋的OpenGL程序在窗口中显示一个简单的正方形。如果我按某个键,我想让程序切换到线框图模式,所以我定义了以下回调函数:
void keyCallback(GLFWwindow *window, int key, int scancode, int action, int mode) {
if (key == GLFW_KEY_ESCAPE and action == GLFW_PRESS) {
glfwSetWindowShouldClose(window, GL_TRUE);
}
if (key == GLFW_KEY_M and action == GLFW_PRESS) {
// Find the rasterizing mode.
GLint rastMode;
glGetIntegerv(GL_POLYGON_MODE, &rastMode);
// Switch modes depending on current rasterizing mode.
if (rastMode == GL_FILL) {
glPolygonMode(GL_FRONT_AND_BACK, GL_LINE);
}
else {
glPolygonMode(GL_FRONT_AND_BACK, GL_FILL);
}
}
}
不幸的是,在我的程序运行时按m会导致段错误。不过,奇怪的是,在我的另一台计算机(运行Ubuntu 16.04但使用Nvidia GPU)上,我没有这样的问题,并且程序按预期工作。
问题不在于glPolygonMode
:我可以将其放入我的main
函数中,程序将成功切换模式。问题似乎在于glGetIntegerv
。如果我在我的main
函数中调用该函数(比如,就在游戏循环之外),我的方块将拒绝出现(尽管没有SEGFULT)。
以下是完整的代码:
#include <array>
#include <fstream>
#include <iostream>
#include <sstream>
#include <string>
#include <GL/glew.h>
#include <GLFW/glfw3.h>
// Vertex and fragment shader source files.
constexpr char VERTEX_SHADER_SOURCE_FILE[] = "simple_vertex.shader";
constexpr char FRAGMENT_SHADER_SOURCE_FILE[] = "simple_fragment.shader";
// Window properties.
constexpr int WINDOW_WIDTH = 800;
constexpr int WINDOW_HEIGHT = 800;
constexpr char WINDOW_TITLE[] = "Triangle";
// Background colour.
constexpr std::array<GLfloat, 4> bgColour { 0.3f, 0.1f, 0.3f, 1.0f };
/*
* Instructs GLFW to close window if escape key is pressed and to toggle between rasterizing modes
* if m is pressed.
*/
void keyCallback(GLFWwindow *window, int key, int scancode, int action, int mode);
int main() {
// Initialize GLFW.
if (not glfwInit()) {
std::cerr << "ERROR: Failed to start GLFW.\n";
return 1;
}
// Set required OpenGL version.
glfwWindowHint(GLFW_CONTEXT_VERSION_MAJOR, 3);
glfwWindowHint(GLFW_CONTEXT_VERSION_MINOR, 3);
glfwWindowHint(GLFW_OPENGL_PROFILE, GLFW_OPENGL_CORE_PROFILE);
// Create a window object and bind it to the current context.
GLFWwindow *window = glfwCreateWindow(WINDOW_WIDTH, WINDOW_HEIGHT, WINDOW_TITLE, nullptr,
nullptr);
if (not window) {
std::cerr << "ERROR: Failed to create GLFW window.\n";
glfwTerminate();
return 1;
}
glfwMakeContextCurrent(window);
// Set callback functions.
glfwSetKeyCallback(window, keyCallback);
// Initialize GLEW with experimental features enabled.
glewExperimental = GL_TRUE;
if (glewInit() != GLEW_OK) {
std::cerr << "ERROR: Failed to start GLEW.\n";
glfwTerminate();
return 1;
}
// Display information on the current GL connection.
std::cout << "Renderer: " << glGetString(GL_RENDERER) << std::endl;
std::cout << "Version: " << glGetString(GL_VERSION) << std::endl;
std::cout << "Shading Language: " << glGetString(GL_SHADING_LANGUAGE_VERSION) << std::endl;
// Define the viewport dimensions.
int width, height;
glfwGetFramebufferSize(window, &width, &height);
glViewport(0, 0, static_cast<GLsizei>(width), static_cast<GLsizei>(height));
// Create a vertex shader object.
GLuint vertexShader = glCreateShader(GL_VERTEX_SHADER);
// Load the vertex shader source code.
std::string vertexShaderSource;
std::ifstream vsfs(VERTEX_SHADER_SOURCE_FILE);
if (vsfs.is_open()) {
std::stringstream ss;
ss << vsfs.rdbuf();
vertexShaderSource = ss.str();
}
else {
std::cerr << "ERROR: File " << VERTEX_SHADER_SOURCE_FILE << " could not be found.\n";
glfwTerminate();
return 1;
}
// Attach the shader source code to the vertex shader object and compile.
const char *vertexShaderSource_cstr = vertexShaderSource.c_str();
glShaderSource(vertexShader, 1, &vertexShaderSource_cstr, nullptr);
glCompileShader(vertexShader);
// Check if compilation was successful.
GLint success;
glGetShaderiv(vertexShader, GL_COMPILE_STATUS, &success);
if (not success) {
std::cerr << "ERROR: Vertex shader compilation failed.\n";
glfwTerminate();
return 1;
}
// Create a fragment shader object.
GLuint fragmentShader = glCreateShader(GL_FRAGMENT_SHADER);
// Load the fragment shader source code.
std::string fragmentShaderSource;
std::ifstream fsfs(FRAGMENT_SHADER_SOURCE_FILE);
if (fsfs.is_open()) {
std::stringstream ss;
ss << fsfs.rdbuf();
fragmentShaderSource = ss.str();
}
else {
std::cerr << "ERROR: File " << FRAGMENT_SHADER_SOURCE_FILE << " could not be found.\n";
glfwTerminate();
return 1;
}
// Attach the shader source code to the fragment shader object and compile.
const char *fragmentShaderSource_cstr = fragmentShaderSource.c_str();
glShaderSource(fragmentShader, 1, &fragmentShaderSource_cstr, nullptr);
glCompileShader(fragmentShader);
// Check if compilation was successful.
glGetShaderiv(fragmentShader, GL_COMPILE_STATUS, &success);
if (not success) {
std::cerr << "ERROR: Fragment shader compilation failed.\n";
glfwTerminate();
return 1;
}
// Link the vertex and fragment shaders into a shader program.
GLuint shaderProgram = glCreateProgram();
glAttachShader(shaderProgram, vertexShader);
glAttachShader(shaderProgram, fragmentShader);
glLinkProgram(shaderProgram);
// Check that shader program was successfully linked.
glGetProgramiv(shaderProgram, GL_LINK_STATUS, &success);
if (not success) {
std::cerr << "ERROR: Shader program linking failed.\n";
glfwTerminate();
return 1;
}
// Delete shader objects.
glDeleteShader(vertexShader);
glDeleteShader(fragmentShader);
// Coordinates of square's vertices.
std::array<GLfloat, 12> vertices {
0.5f, 0.5f, 0.0f,
0.5f, -0.5f, 0.0f,
-0.5f, -0.5f, 0.0f,
-0.5f, 0.5f, 0.0f
};
// Indices to draw.
std::array<GLuint, 6> indices {
0, 1, 3,
1, 2, 3
};
// Create a vertex array object.
GLuint vao;
glGenVertexArrays(1, &vao);
glBindVertexArray(vao);
// Create a vertex buffer object.
GLuint vbo;
glGenBuffers(1, &vbo);
glBindBuffer(GL_ARRAY_BUFFER, vbo);
// Create an element buffer object.
GLuint ebo;
glGenBuffers(1, &ebo);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, ebo);
// Pass vertex data into currently bound vertex buffer object.
glBufferData(GL_ARRAY_BUFFER, sizeof(vertices), vertices.data(), GL_STATIC_DRAW);
// Pass index data into currently bound element buffer object.
glBufferData(GL_ELEMENT_ARRAY_BUFFER, sizeof(indices), indices.data(), GL_STATIC_DRAW);
// Create and enable a vertex attribute.
glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 3 * sizeof(GLfloat), static_cast<GLvoid*>(0));
glEnableVertexAttribArray(0);
// It is good practice to unbind the vertex array object, vertex buffer object, and element
// buffer object.
glBindBuffer(GL_ARRAY_BUFFER, 0);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0);
glBindVertexArray(0);
// Set background colour.
glClearColor(bgColour[0], bgColour[1], bgColour[2], bgColour[3]);
// Main loop.
while (not glfwWindowShouldClose(window)) {
// Clear the screen of colours and poll for events.
glClear(GL_COLOR_BUFFER_BIT);
glfwPollEvents();
// Inform OpenGL to use the shader program created above.
glUseProgram(shaderProgram);
// Bind the vertex array object and element buffer object.
glBindVertexArray(vao);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, ebo);
// Draw the triangle using glDrawElements. The first argument gives the OpenGL primitive to
// render, the second argument gives the number of vertices to draw, the third gives type
// used to represent an index, and finally the last argument gives a possible offset in the
// EBO.
glDrawElements(GL_TRIANGLES, 6, GL_UNSIGNED_INT, static_cast<GLvoid*>(0));
// Unbind the vertex array object (good practice).
glBindVertexArray(0);
// Swap buffers.
glfwSwapBuffers(window);
}
// Clean up.
glDeleteVertexArrays(1, &vao);
glDeleteBuffers(1, &vbo);
glDeleteProgram(shaderProgram);
glfwDestroyWindow(window);
glfwTerminate();
return 0;
}
void keyCallback(GLFWwindow *window, int key, int scancode, int action, int mode) {
if (key == GLFW_KEY_ESCAPE and action == GLFW_PRESS) {
glfwSetWindowShouldClose(window, GL_TRUE);
}
if (key == GLFW_KEY_M and action == GLFW_PRESS) {
// Find the rasterizing mode.
GLint rastMode;
glGetIntegerv(GL_POLYGON_MODE, &rastMode);
// Switch modes depending on current rasterizing mode.
if (rastMode == GL_FILL) {
glPolygonMode(GL_FRONT_AND_BACK, GL_LINE);
}
else {
glPolygonMode(GL_FRONT_AND_BACK, GL_FILL);
}
}
}
文件显示:
params返回两个值:符号常量,指示正面和背面多边形是光栅化为点、线还是填充多边形
总结@Wyzard和我的评论:glGetIntegerv(GL_POLYGON_模式,
解决方案是传递两个整数的缓冲区。
我正在尝试用Objective-C编写一个波阵面OBJ文件查看器,它能够从文件中加载网格/材质/着色器。我已经为着色器和着色器程序创建了类,我正在尝试创建一个OpenGL着色器程序对象,作为着色器程序类的init方法的一部分: 但是,调用glCreateProgram会导致EXC_BAD_访问,调用[SRShader compile]也会导致EXC_BAD_访问,而[SRShader compil
我能够创建一个窗口,并清除到所需的颜色。但无法在左下角绘制正方形。
我希望通过一条线串拆分一个多多边形(代表一个有岛屿的国家),从而将该县一分为二。 此结果是GeometryCollection对象中的一组多边形。如何将结果分组为两个多多边形对象,每个对象都包含各自一半的多边形? 使现代化 问题:确定分裂形状几何的“左”和“右”侧提供了一个很好的解决方案,其中从结果中的每个多边形中提取一个点,看看当与分裂的LineString结合时,它是否形成顺时针或逆时针线串。
我没有使用查看页面,我调用任何片段事务的唯一地方是单击活动布局中导航栏上的按钮。 当我切换到片段太快(像来回),我得到这个例外: java.lang.IllegalStateException:无活动 当我点击切换另一个片段时,第一个片段还没有完全加载完毕。我正在使用碎片活动。 有人能对此发表一些见解吗? 我的代码切换s: 编辑:去掉过渡解决了问题,但我想知道是否有一种方法可以在适当的位置完成过渡
我最近遇到了一个问题,我们的一个遗留应用程序依赖于UPS跟踪API。UPS更改了其通信协议以要求TLSv1。2.不幸的是,JDK1.6的最新公共版本似乎不支持此协议,因此我的选择是支付oracle支持合同或升级到JDK1.7。我升级到了1.7 我改变了项目的依赖关系,一切看起来都很好。当我尝试实际部署到应用程序服务器时,失败了,错误如下: com.sun.xml.bind.v2.runtime.I
服务模式切换比较麻烦,需要您的Kubernetes支持,目前我们使用的是istio的方案,也就是说您需要在你的kubernetes上安装istio的相关服务,并且在我们的模版管理将istio所需要的几个模版配置上。才能开启此功能。 如果您没有安装Istio,可跳过此章。 依赖 在"模版管理"菜单找到Gateway、VritualService、InitContainer、IstioProxy这几个