Spark-submit--class MyClass-master yar--deploy-mode cluster--executor-memory 1g--executor-cores 2 hdfs://url:port/my.jar
这个应用程序,接收来自kinesis流的传入数据,并基于它执行一个请求(回发)到一个我可以跟踪的url。我已经在本地测试了我的应用程序,运行它设置SparkConfig上的Master到本地[核心]。
此外,这里是我的代码和我的构建SBT。我的项目使用的是scala 2.11.8和sbt 0.13.8
name := "my-app"
version := "1.0"
scalaVersion := "2.11.8"
libraryDependencies ++= Seq(
"org.apache.spark" % "spark-streaming_2.11" % "2.0.0" % "provided",
"org.apache.spark" % "spark-streaming-kinesis-asl-assembly_2.11" % "2.0.0",
"org.scalaj" % "scalaj-http_2.11" % "2.3.0"
)
assemblyMergeStrategy in assembly := {
case PathList("org", "apache", xs @ _*) => MergeStrategy.last
case x =>
val oldStrategy = (assemblyMergeStrategy in assembly).value
oldStrategy(x)
}
import com.amazonaws.auth.BasicAWSCredentials
import com.amazonaws.internal.StaticCredentialsProvider
import com.amazonaws.regions.RegionUtils
import com.amazonaws.services.kinesis.AmazonKinesisClient
import com.amazonaws.services.kinesis.clientlibrary.lib.worker.InitialPositionInStream
import com.keynetic_digital.model.RawKDLog
import org.apache.spark.SparkConf
import org.apache.spark.storage.StorageLevel
import org.apache.spark.streaming.kinesis.KinesisUtils
import org.apache.spark.streaming.{Duration, Milliseconds, StreamingContext}
import utils.HttpRequest
/**
* Created by franco on 18/01/17.
*/
object MyClass {
val awsAccessKeyId : String = "xxxxxxxxx"
val awsSecretKey : String = "xxxxxxxx"
val kinesisStreamName : String = "xxxxxxxx"
val kinesisEndpoint : String = "https://kinesis.us-west-2.amazonaws.com"
val appName : String = "xxxxxxxxx"
def main(args: Array[String]): Unit = {
//Set up Amazon Kinesis Client
val kinesisClient : AmazonKinesisClient = createKinesisClient
//Get all Kinesis shards
val shards = kinesisClient.describeStream(kinesisStreamName).getStreamDescription.getShards.size()
val batchInterval = Milliseconds(5000)
// Create Spark Streaming Context
val ssc : StreamingContext = createContext(batchInterval)
val regionName = RegionUtils.getRegionByEndpoint(kinesisEndpoint).getName
// Create the Kinesis DStreams
val kinesisStreams = (0 until shards).map { i =>
KinesisUtils.createStream(ssc, appName,
kinesisStreamName,kinesisEndpoint,
regionName,InitialPositionInStream.LATEST, batchInterval * 2,
StorageLevel.MEMORY_AND_DISK_2)
}
//Unified all Streams
val stream = ssc.union(kinesisStreams)
//Get an RDD of Option(KDLog) items
val jsons = stream.map(bytes => Option(RawKDLog.fromJson(bytes))).filter(_.isDefined)
jsons.foreachRDD{rdd =>
rdd.foreach{log =>
handleLog(log)
}
}
// Start the streaming context and await termination
ssc.start()
ssc.awaitTermination()
}
def createKinesisClient : AmazonKinesisClient = {
//Set System Properties for Worker
System.setProperty("aws.accessKeyId", awsAccessKeyId)
System.setProperty("aws.secretKey", awsSecretKey)
//Setting AWS Credentials
val credentials : BasicAWSCredentials = new BasicAWSCredentials(awsAccessKeyId,awsSecretKey)
//Setting AWS Credential Provider
val provider : StaticCredentialsProvider = new StaticCredentialsProvider(credentials)
//Setting Kinesis Client
val kinesisClient : AmazonKinesisClient = new AmazonKinesisClient(provider)
kinesisClient.setEndpoint(kinesisEndpoint)
kinesisClient
}
def createContext(batchInterval : Duration) : StreamingContext = {
// Create Spark Configuration
val config = new SparkConf().setAppName(appName)
// Create Spark Streaming Context
new StreamingContext(config, batchInterval)
}
def handleLog(log : Option[RawKDLog]) : Unit = {
if(log.isDefined){
postBack(log.get)
}
}
/**
* Method that handles url postback requests
*/
private def postBack(log : RawKDLog) = {
//TODO url queryString replacement & request masking
val postBackUrl : String = "url where I can track requests by tailing Nginx log"
HttpRequest(postBackUrl) .asString
}
}
在集群主节点中子密化应用程序后,出现以下错误。
17/01/18 14:39:26 INFO Client:
client token: N/A
diagnostics: User class threw exception: org.apache.spark.SparkException: Job aborted due to stage failure: Task 0 in stage 3.0 failed 4 times, most recent failure: Lost task 0.3 in stage 3.0 (TID 74, ip-172-31-42-151.us-west-2.compute.internal): java.lang.NoSuchMethodError: org.apache.spark.storage.BlockManager.get(Lorg/apache/spark/storage/BlockId;)Lscala/Option;
at org.apache.spark.streaming.kinesis.KinesisBackedBlockRDD.getBlockFromBlockManager$1(KinesisBackedBlockRDD.scala:104)
at org.apache.spark.streaming.kinesis.KinesisBackedBlockRDD.compute(KinesisBackedBlockRDD.scala:117)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:319)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:283)
at org.apache.spark.rdd.UnionRDD.compute(UnionRDD.scala:105)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:319)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:283)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:319)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:283)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:319)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:283)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:70)
at org.apache.spark.scheduler.Task.run(Task.scala:86)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:274)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
at java.lang.Thread.run(Thread.java:745)
Driver stacktrace:
ApplicationMaster host: 175.31.43.46
ApplicationMaster RPC port: 0
queue: default
start time: 1484750075922
final status: FAILED
tracking URL: http://ip-175-31-46-219.us-west-2.compute.internal:20888/proxy/application_1484568737877_0012/
user: hadoop
Exception in thread "main" org.apache.spark.SparkException: Application application_1484568737877_0012 finished with failed status
at org.apache.spark.deploy.yarn.Client.run(Client.scala:1132)
at org.apache.spark.deploy.yarn.Client$.main(Client.scala:1178)
at org.apache.spark.deploy.yarn.Client.main(Client.scala)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:498)
at org.apache.spark.deploy.SparkSubmit$.org$apache$spark$deploy$SparkSubmit$$runMain(SparkSubmit.scala:736)
at org.apache.spark.deploy.SparkSubmit$.doRunMain$1(SparkSubmit.scala:185)
at org.apache.spark.deploy.SparkSubmit$.submit(SparkSubmit.scala:210)
at org.apache.spark.deploy.SparkSubmit$.main(SparkSubmit.scala:124)
at org.apache.spark.deploy.SparkSubmit.main(SparkSubmit.scala)
17/01/18 14:39:26 INFO ShutdownHookManager: Shutdown hook called
我真的很感激任何关于这个主题的指导,因为我是开发和使用spark应用程序的新手。
本文就Kinesis中的火花流错误给出了解决方法
实际上,我已经用amazon emr 5.2.1建立了集群,它使用Spark 2.0.2并且我绑定了我的胖罐子,使用Spark-Streaming-Kinesis-ASL-Assembly2.11 2.2.0。
因此,我的应用程序无法从Kinesis读取输入数据
当我使用以下命令运行11应用程序时: 遇到以下错误: 根据我的理解,这个异常是我的模块设置有问题,但我不清楚需要更改什么: 向以及哪些? 添加到模块使用的命令 完全不同的东西?
我试图在集群模式下实现Camel:Quartz2调度器。这是我的两条路线 我的Application.Properties如下所示
除了上面的命令之外,我还尝试了 “sudo pm2 start npm--branch_env=stage node_env=production port=80 node appserverstart.js” 请救命! ----错误详细信息---- AppServerStart.js -----附加信息----服务器:CentOS Linux version 7 core,npm版本:6.4.1
Redis streams是否受益于群集模式?假设您有10个流,它们是分布在集群中还是全部分布在同一个节点上?我计划使用Redis streams实现真正的高吞吐量(每秒200万条消息),因此我担心Redis streams在这种规模下的性能。 如果Redis streams不能在集群模式下进行开箱即用的扩展,那么任何关于水平扩展Redis streams的指导都会非常棒。
我写了Kafka流应用程序,我想把它部署在Kafka集群上。因此,我构建了一个jar文件,并使用以下命令运行它: