当前位置: 首页 > 知识库问答 >
问题:

打印无向图中循环的边

施德运
2023-03-14

我有一个无向图,它被加载为邻接矩阵。我有一个使用BFS算法检测图中循环的方法。我试图实现的是打印所有的边缘,以一种方式,他们表明一个循环,已经找到。

我可以打印一个图形中的所有边,但我不能只打印那些创建循环的边。我怎么让它工作?

边缘:

public class Edge {
    int source, dest;

    public Edge(int source, int dest) {
        this.source = source;
        this.dest = dest;
    }
}

图表:

public class Graph {
    // A List of Lists to represent an adjacency list
    // Each insideList contains pointers to the next vertex
    // list with an index of 1 (vertex 1) contains elements 2 and 3 (where 2, 3 are vertices connected to 1) 
    List<List<Integer>> adjList = null;

    // Constructor
    public Graph(List<Edge> edges, int N) {
        adjList = new ArrayList<>(N);

        for (int i = 0; i < N; i++) {
            adjList.add(i, new ArrayList<>());
        }

        // add edges to the undirected graph
        for (Edge edge : edges) {
            int src = edge.source;
            int dest = edge.dest;

            adjList.get(src).add(dest);
            adjList.get(dest).add(src);
        }
    }
}

节点:

public class Node {
    int v, parent;

    public Node(int v, int parent) {
        this.v = v;
        this.parent = parent;
    }
}
public class GraphTest {
    // Perform BFS on graph starting from vertex src and
    // returns true if cycle is found in the graph

    // while traversing the graph, it should display the edges which create a cycle, but I am unable to do it (the result is wrong)
    public static boolean BFS(Graph graph, int src, int N) {
        // stores booleans if a vertex is discovered or not
        boolean[] discovered = new boolean[N];

        // mark source vertex as discovered
        discovered[src] = true;

        // create a queue used to do BFS and
        // push source vertex into the queue
        Queue<Node> q = new ArrayDeque<>();
        q.add(new Node(src, -1));

        // run till queue is not empty
        while (!q.isEmpty()) {
            // pop front node from queue and print it
            Node node = q.poll();

            // do for every edge (v -> u)
            for (int u : graph.adjList.get(node.v)) {
                if (!discovered[u]) {
                    // mark it as discovered
                    discovered[u] = true;

                    // construct the queue node containing info
                    // about vertex and push it into the queue
                    System.out.println(node.v + " -- " + u);
                    q.add(new Node(u, node.v));
                }

                // u is discovered and u is not a parent
                else if (u != node.parent) {
                    // we found a cross-edge ie. cycle is found
                    return true;
                }
            }
        }

        // No cross-edges found in the graph
        return false;
    }
    // Check if an undirected graph contains cycle or not
    public static void main(String[] args) {
        // In my case I load an adjacency matrix from file and then perform an action to create Edges.
        // 0 1 1 0 
        // 1 0 1 0 
        // 1 1 0 1 
        // 0 0 1 0

        // Edge(1, 2), Edge(2, 3), Edge(3, 1), Edge(3, 4)
        // Edge(3, 1) introduces a cycle in the graph

        List<Edge> edges = new ArrayList<Edge>();
        ArrayList<ArrayList<Integer>> matrixList = loadFromFile(filePath);
        System.out.println("Graph: (Adjacency Matrix)");
        for (int i = 0; i < matrixList.size(); i++) {
            for (int j = 0; j < matrixList.size(); j++) {
                System.out.print(matrixList.get(i).get(j) + " ");
            }
            System.out.println();
        }
        System.out.println("All the edges: ");
        for (int i = 0; i < matrixList.size(); i++) {
            // ' + 1' is added so as to start vertices from 1 instead of 0
            int temp = i + 1;
            for (int j = 0; j < matrixList.size(); j++) {
                if (matrixList.get(i).get(j) == 1) {
                    System.out.println(temp + "--" + (j + 1) + " ");
                    // each edge is added one-way only since it is an undirected graph
                    // if Edge(1,3) is already present, Edge(3,1) is not added
                    boolean isFound = false;
                    for (Edge e : edges) {
                        if (e.dest == temp && e.source == (j + 1)) {
                            isFound = true;
                        }
                    }
                    if (!isFound)
                        edges.add(new Edge(temp, j + 1));
                }
            }
            System.out.println();
        }

        // sets number of vertices in the graph
        final int N = 5;

        // creates a graph from edges
        Graph graph = new Graph(edges, N);
        boolean[] discovered = new boolean[N];

        // do BFS traversal in connected components of graph
        System.out.println("Detect a cycle: ");
        if (BFS(graph, 1, N))
            System.out.println("Graph contains cycle");
        else
            System.out.println("Graph doesn't contain any cycle");
}

当前错误输出:显示一个周期的部分边沿,但不是全部边沿

预期输出:打印创建循环的所有边,如上面的示例所示,

我想显示:1--2,2--3,3--1一条边的结束顶点是循环中另一条边的起始顶点。

共有1个答案

轩辕煌
2023-03-14

我不是说这是达到结果的最好方法,但这是方法之一。

首先,我要更改节点的定义:

public class Node {
    int v;
    Node parent;

    public Node(int v, Node parent) {
        this.v = v;
        this.parent = parent;
    }
}

然后在您的方法BFS中,我将发现的布尔数组更改为节点数组,这样您就知道了,哪个路径通向这个节点。

// stores booleans if a vertex is discovered or not
Node[]  discovered = new Node[N];
public static boolean BFS(Graph graph, int src, int N) {
        // stores booleans if a vertex is discovered or not
        Node[]  discovered = new Node[N];

        // mark source vertex as discovered
        Node start = new Node(src, null);
        discovered[src] = start;

        // create a queue used to do BFS and
        // push source vertex into the queue
        Queue<Node> q = new LinkedList<>();
        q.add(start);

        // run till queue is not empty
        while (!q.isEmpty()) {
            // pop front node from queue and print it
            Node node = q.poll();

            // do for every edge (v -> u)
            for (int u : graph.adjList.get(node.v)) {
                if (discovered[u] == null) {
                    // mark it as discovered
                    Node newNode = new Node(u, node);
                    discovered[u] = newNode;

                    // construct the queue node containing info
                    // about vertex and push it into the queue
                    q.add(newNode);
                }

                // u is discovered and u is not a parent
                else if (u != node.parent.v) {                      
                    Node newNode = new Node(u, node);
                    int commonParent = findCommonParent(discovered[u], newNode);

                    String result = "";

                    Node current;

                    current =  discovered[u];
                    while(current.v != commonParent) {
                        result = current.parent.v + "--" + current.v + ", " + result;
                        current = current.parent;
                    }

                    current = newNode;
                    while(current.v != commonParent) {
                        result = result + current.v + "--" + current.parent.v + ", ";
                        current = current.parent;
                    }
                    result = result.substring(0, result.length() - 2);

                    System.out.println(result);
                    // we found a cross-edge ie. cycle is found
                    return true;
                }
            }
        }

        // No cross-edges found in the graph
        return false;
    }

方法findCommonParent可以实现,例如如下所示:

private static int findCommonParent(Node n1, Node n2) {     
    Set<Integer> n1Parents = new HashSet<Integer>();
    Node temp = n1.parent;
    while(temp != null) {
        n1Parents.add(temp.v);
        temp = temp.parent;
    }       
    temp = n2.parent;
    while(temp != null) {
        if(n1Parents.contains(temp.v)) {
            break;
        }
        temp = temp.parent;
    }

    return temp.v;
}
 类似资料:
  • 我们可以用这里所述的算法求有向图中的圈数。我需要理解算法。 (1)最后那句话到底有什么用处?对algo的工作原理进行简短的描述会很有帮助。由于算法基本上是统计从一个节点返回到同一节点的周期数,所以我们可以使用另一个数组,称之为v,并做以下技巧: (2)我不能实现我刚才写的算法。这是主要的问题,但我认为我需要理解上面的(1)来理解打印所有循环的代码。 我了解到互联网上有算法,我正在尝试使用这个算法。

  • 如何在有向加权图中找到负循环。我知道Bellman-Ford算法是如何工作的,它告诉我是否存在可达到的负循环。但它没有明确地命名它。 如何获得循环的实际路径v1,v2,…vk,v1? 在应用标准算法后,我们已经进行了n−1次迭代,不可能有进一步的改进。如果我们仍然可以降低到节点的距离,则存在负循环。 假设edge(v, u)是bellman ford算法在第n次迭代中失败的边缘-d(u)

  • 问题内容: 是否可以打印字符串“ x”次? 例如,如果给定字符串 假设用户输入数字“ 4”,表示他们希望重复字符串的次数。 该程序将打印: 问题答案: 您可以像这样使用递归 并最初调用这样的方法-

  • 目前我正在用这个样本进行拓扑排序,并对https://www.geeksforgeeks.org/topological-sorting/做了一些修改 我用它来排序要求解的变量的顺序。 样本 每个变量都有一个唯一整数,并存储在一个映射中 创建图形并添加边时,总共有4个顶点,因此我的代码将像这样构造图形 排序并按相反顺序得到结果后,它是正确的c 一切都很好,但我需要检测图中的循环引用。假设变量是 有

  • 因此,我为DFS编写了以下代码: 现在,我读到,在一个无向图中,如果当DFS时,它再次返回到同一个顶点,有一个循环。所以我做的是这样,, 但是,我的检查周期函数返回true,即使他们没有周期。那是为什么呢?我的功能有问题吗?没有执行问题,否则我早就调试了,但他们似乎在我的逻辑中有问题。

  • 问题内容: 打印从1到1000的数字,而不使用任何循环或条件语句。不要只写printf()orcout语句1000次。 您将如何使用C或C ++做到这一点? 问题答案: 编译时间递归!:P