我试图计算许多列的行平均值。有人能解释一下为什么下面的代码只计算代码中两个变量(var_1和var_13)的平均值,而不是所有13列的平均值吗?
df %>%
rowwise() %>%
mutate(varmean = mean(var_1:var_13)) -> df
使用dplyr的两种可能性:
library(dplyr)
mtcars %>%
rowwise() %>%
mutate(varmean = mean(c_across(mpg:vs)))
这个返回
# A tibble: 32 x 12
# Rowwise:
mpg cyl disp hp drat wt qsec vs am gear carb varmean
<dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 21 6 160 110 3.9 2.62 16.5 0 1 4 4 40.0
2 21 6 160 110 3.9 2.88 17.0 0 1 4 4 40.1
3 22.8 4 108 93 3.85 2.32 18.6 1 1 4 1 31.7
4 21.4 6 258 110 3.08 3.22 19.4 1 0 3 1 52.8
5 18.7 8 360 175 3.15 3.44 17.0 0 0 3 2 73.2
6 18.1 6 225 105 2.76 3.46 20.2 1 0 3 1 47.7
7 14.3 8 360 245 3.21 3.57 15.8 0 0 3 4 81.2
8 24.4 4 147. 62 3.69 3.19 20 1 0 4 2 33.1
9 22.8 4 141. 95 3.92 3.15 22.9 1 0 4 2 36.7
10 19.2 6 168. 123 3.92 3.44 18.3 1 0 4 4 42.8
# ... with 22 more rows
并且没有行()
并使用基数 R
s 行数()
:
mtcars %>%
mutate(varmean = rowMeans(across(mpg:vs)))
返回
mpg cyl disp hp drat wt qsec vs am gear carb varmean
Mazda RX4 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4 39.99750
Mazda RX4 Wag 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4 40.09938
Datsun 710 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1 31.69750
Hornet 4 Drive 21.4 6 258.0 110 3.08 3.215 19.44 1 0 3 1 52.76687
Hornet Sportabout 18.7 8 360.0 175 3.15 3.440 17.02 0 0 3 2 73.16375
Valiant 18.1 6 225.0 105 2.76 3.460 20.22 1 0 3 1 47.69250
Duster 360 14.3 8 360.0 245 3.21 3.570 15.84 0 0 3 4 81.24000
Merc 240D 24.4 4 146.7 62 3.69 3.190 20.00 1 0 4 2 33.12250
Merc 230 22.8 4 140.8 95 3.92 3.150 22.90 1 0 4 2 36.69625
Merc 280 19.2 6 167.6 123 3.92 3.440 18.30 1 0 4 4 42.80750
我正在尝试使用创建一个新列,该列的值基于特定的列。 最后一个数据帧示例(我正在尝试创建): 这个问题基本上与此相反:dplyr-mutate:使用动态变量名。我不能使解决方案适应我的问题。
我已经更新了dplyr(现在是0.7.1),我的很多旧代码都不能用了,因为mutate_each已经被弃用了。我曾经用mutate_each做类似这样的事情(代码如下),使用列索引。我会在数百个专栏中这样做。而我就是搞不清楚如何用mutate_at正确使用vars参数。我看到的所有例子都使用了列名...我不想这么做。我确信这是一个简单的答案,但是我已经花了太多的时间试图弄明白它,并且将非常感谢一些
我有一个带有两个得分列的data.frame。我希望在每行的基础上有条件地使用其中一个的数据。我用下面的一个例子来解释... 在这种情况下,Final最终将与test_low相同,因为对于两个Mains(即,当单元格为'high'时,单元格为'low时),test_low列小于test_high列。
我试图计算在一个Tibble中源向量和比较向量之间的Jaccard相似度。 jaccard_sim中的所有值都为零。但是,如果我们运行类似这样的东西,我们得到第一个条目的正确的Jaccard相似度为0.2:
在一个有四列的大数据框(“myfile”)中,我必须添加第五列,其中的值有条件地基于前四列。 更喜欢使用和的答案,主要是因为它在大型数据集中的速度。 我的数据框如下所示: 第五列(V5)的值基于一些条件规则: 现在我想使用函数在所有行上使用这些规则(以避免慢循环)。类似这样的事情(是的,我知道这样不行!): 结果应该是: 如何在dplyr中执行此操作?
我有一个名称重复的数据集。如果名称重复,我想创建一个值为1(TRUE)或0(FALSE)的新列。 这是我使用的代码: 或者 然而,我得到了上面可以看到的错误。 另一个想法是使用group_by,然后计算计数。喜欢: 但是,它不能返回原始数据帧后group_by