我正在使用带更新模式的结构化流媒体读取Kafka主题中的数据流。,然后做一些改变。
然后我创建了一个jdbc接收器,用追加模式在mysql接收器中推送数据。问题是我如何告诉我的接收器让它知道这是我的主键,并基于它进行更新,这样我的表就不会有任何重复的行。
val df: DataFrame = spark
.readStream
.format("kafka")
.option("kafka.bootstrap.servers", "<List-here>")
.option("subscribe", "emp-topic")
.load()
import spark.implicits._
// value in kafka is bytes so cast it to String
val empList: Dataset[Employee] = df.
selectExpr("CAST(value AS STRING)")
.map(row => Employee(row.getString(0)))
// window aggregations on 1 min windows
val aggregatedDf= ......
// How to tell here that id is my primary key and do the update
// based on id column
aggregatedDf
.writeStream
.trigger(Trigger.ProcessingTime(60.seconds))
.outputMode(OutputMode.Update)
.foreachBatch { (batchDF: DataFrame, batchId: Long) =>
batchDF
.select("id", "name","salary","dept")
.write.format("jdbc")
.option("url", "jdbc:mysql://localhost/empDb")
.option("driver","com.mysql.cj.jdbc.Driver")
.option("dbtable", "empDf")
.option("user", "root")
.option("password", "root")
.mode(SaveMode.Append)
.save()
}
一种方法是,您可以使用上的重复密钥更新
和foreachPartition
来实现这一目的
下面是伪代码片段
/**
* Insert in to database using foreach partition.
* @param dataframe : DataFrame
* @param sqlDatabaseConnectionString
* @param sqlTableName
*/
def insertToTable(dataframe: DataFrame, sqlDatabaseConnectionString: String, sqlTableName: String): Unit = {
//numPartitions = number of simultaneous DB connections you can planning to give
datframe.repartition(numofpartitionsyouwant)
val tableHeader: String = dataFrame.columns.mkString(",")
dataFrame.foreachPartition { partition =>
// Note : Each partition one connection (more better way is to use connection pools)
val sqlExecutorConnection: Connection = DriverManager.getConnection(sqlDatabaseConnectionString)
//Batch size of 1000 is used since some databases cant use batch size more than 1000 for ex : Azure sql
partition.grouped(1000).foreach {
group =>
val insertString: scala.collection.mutable.StringBuilder = new scala.collection.mutable.StringBuilder()
group.foreach {
record => insertString.append("('" + record.mkString(",") + "'),")
}
val sql = s"""
| INSERT INTO $sqlTableName VALUES
| $tableHeader
| ${insertString}
| ON DUPLICATE KEY UPDATE
| yourprimarykeycolumn='${record.getAs[String]("key")}'
sqlExecutorConnection.createStatement()
.executeUpdate(sql)
}
sqlExecutorConnection.close() // close the connection
}
}
可以使用preparedstatement代替jdbc语句。
进一步阅读: SPARKSQL-使用DataFrames和JDBC更新MySql表
在过去的几个月里,我已经使用了相当多的结构化流来实现流作业(在大量使用Kafka之后)。在阅读了《Stream Processing with Apache Spark》一书之后,我有这样一个问题:有没有什么观点或用例可以让我使用Spark Streaming而不是Structured Streaming?如果我投入一些时间来研究它,或者由于im已经使用了Spark结构化流,我应该坚持使用它,而之
场景与经典的流连接略有不同 交易流: transTS, userid, productid,... streamB:创建的新产品流:productid、productname、createTS等) 我想加入与产品的交易,但我找不到水印/加入条件的组合来实现这一点。 结果为空。 我做错了什么?
我正在使用Kafka和Spark 2.1结构化流。我有两个json格式的数据主题,例如: 我需要比较Spark中基于标记的两个流:name,当值相等时,执行一些额外的定义/函数。 如何使用Spark结构化流来做到这一点? 谢谢
我正在尝试将连续触发器与 Spark 结构化流式处理查询结合使用。我得到的错误是,火花消费者在处理数据时找不到适当的偏移量。如果没有此触发器,查询将正常运行(如预期)。 我的工作: 从Kafka主题读取数据: 将数据写入Kafka主题: 所以我基本上没有做什么特别的事情——只是将输入数据传输到输出主题,而没有任何转换或无效操作。 我得到了什么: 在executor日志中,我看到很多这样的消息: 尽
我正在研究为Spark结构化流在kafka中存储kafka偏移量,就像它为DStreams工作一样,除了结构化流,我也在研究同样的情况。是否支持结构化流?如果是,我如何实现? 我知道使用进行hdfs检查点,但我对内置的偏移量管理感兴趣。 我期待Kafka存储偏移量只在内部没有火花hdfs检查点。
我是Kafka流媒体的新手。我使用python设置了一个twitter监听器,它运行在localhost:9092kafka服务器中。我可以使用kafka客户端工具(conduktor)并使用命令“bin/kafka-console-consumer.sh--bootstrap-server localhost:9092-topic twitter--from-begind”来使用侦听器生成的流,