我有一个二维点的列表,它是一个闭环,二维,凹形多边形。
我想生成第二个多边形,它完全在第一个多边形的内部,并且第一个多边形的每个顶点/边缘到第二个多边形的每个顶点/边缘具有恒定的距离。
基本上,第一个多边形是“外墙”,第二个多边形是“内壁”,两墙之间的距离不变。
怎么做这样的事?
对于不关心自相交的情况,构造非常简单:
对于多边形的每个顶点:
以下是Java实现的MCVE /Swing.实际的计算发生在computeOffsetPolygonPoint
中,将其翻译成其他语言和API应该很容易。
如果你还必须处理自身交叉点,事情可能会变得更棘手。然后有必要定义预期的结果,特别是对于多边形本身自相交的情况。。。
import java.awt.BorderLayout;
import java.awt.Color;
import java.awt.Graphics;
import java.awt.Graphics2D;
import java.awt.RenderingHints;
import java.awt.event.MouseEvent;
import java.awt.event.MouseListener;
import java.awt.event.MouseMotionListener;
import java.awt.geom.Ellipse2D;
import java.awt.geom.Line2D;
import java.awt.geom.Point2D;
import java.util.ArrayList;
import java.util.List;
import javax.swing.JFrame;
import javax.swing.JPanel;
import javax.swing.JSlider;
import javax.swing.SwingUtilities;
public class InnerPolygonShape
{
public static void main(String[] args)
{
SwingUtilities.invokeLater(() -> createAndShowGUI());
}
private static void createAndShowGUI()
{
JFrame f = new JFrame();
f.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
InnerPolygonShapePanel innerPolygonShapePanel =
new InnerPolygonShapePanel();
JSlider offsetSlider = new JSlider(0, 100, 40);
offsetSlider.addChangeListener(e ->
{
double alpha = offsetSlider.getValue() / 100.0;
double offset = -50.0 + alpha * 100.0;
innerPolygonShapePanel.setOffset(offset);
});
f.getContentPane().setLayout(new BorderLayout());
f.getContentPane().add(innerPolygonShapePanel, BorderLayout.CENTER);
f.getContentPane().add(offsetSlider, BorderLayout.SOUTH);
f.setSize(800,800);
f.setLocationRelativeTo(null);
f.setVisible(true);
}
}
class InnerPolygonShapePanel extends JPanel
implements MouseListener, MouseMotionListener
{
private final List<Point2D> points;
private Point2D draggedPoint;
private double offset = -10.0;
public InnerPolygonShapePanel()
{
this.points = new ArrayList<Point2D>();
points.add(new Point2D.Double(132,532));
points.add(new Point2D.Double(375,458));
points.add(new Point2D.Double(395,267));
points.add(new Point2D.Double(595,667));
addMouseListener(this);
addMouseMotionListener(this);
}
public void setOffset(double offset)
{
this.offset = offset;
repaint();
}
@Override
protected void paintComponent(Graphics gr)
{
super.paintComponent(gr);
Graphics2D g = (Graphics2D)gr;
g.setRenderingHint(
RenderingHints.KEY_ANTIALIASING,
RenderingHints.VALUE_ANTIALIAS_ON);
g.setColor(Color.BLACK);
paint(g, points);
List<Point2D> offsetPolygonPoints =
computeOffsetPolygonPoints(points, offset);
g.setColor(Color.BLUE);
paint(g, offsetPolygonPoints);
}
private static void paint(Graphics2D g, List<Point2D> points)
{
for (int i = 0; i < points.size(); i++)
{
int i0 = i;
int i1 = (i + 1) % points.size();
Point2D p0 = points.get(i0);
Point2D p1 = points.get(i1);
g.draw(new Line2D.Double(p0, p1));
}
g.setColor(Color.RED);
for (Point2D p : points)
{
double r = 5;
g.draw(new Ellipse2D.Double(p.getX()-r, p.getY()-r, r+r, r+r));
}
}
private static List<Point2D> computeOffsetPolygonPoints(
List<Point2D> points, double offset)
{
List<Point2D> result = new ArrayList<Point2D>();
Point2D absoluteLocation = new Point2D.Double();
for (int i = 0; i < points.size(); i++)
{
// Consider three consecutive points (previous, current, next)
int ip = (i - 1 + points.size()) % points.size();
int ic = i;
int in = (i + 1) % points.size();
Point2D pp = points.get(ip);
Point2D pc = points.get(ic);
Point2D pn = points.get(in);
// Compute the line segments between the previous and the current
// point, and the current and the next point, and compute their
// normal
Point2D line0 = difference(pc, pp);
Point2D direction0 = normalize(line0);
Point2D normal0 = rotateCw(direction0);
Point2D line1 = difference(pn, pc);
Point2D direction1 = normalize(line1);
Point2D normal1 = rotateCw(direction1);
// Shift both line segments along the normal
Point2D segment0p0 = add(pp, offset, normal0);
Point2D segment0p1 = add(pc, offset, normal0);
Point2D segment1p0 = add(pc, offset, normal1);
Point2D segment1p1 = add(pn, offset, normal1);
// Compute the intersection between the shifted line segments
intersect(
segment0p0.getX(), segment0p0.getY(),
segment0p1.getX(), segment0p1.getY(),
segment1p0.getX(), segment1p0.getY(),
segment1p1.getX(), segment1p1.getY(),
null, absoluteLocation);
result.add(new Point2D.Double(
absoluteLocation.getX(), absoluteLocation.getY()));
}
return result;
}
@Override
public void mouseDragged(MouseEvent e)
{
if (draggedPoint != null)
{
draggedPoint.setLocation(e.getX(), e.getY());
repaint();
}
}
@Override
public void mousePressed(MouseEvent e)
{
final double thresholdSquared = 10 * 10;
Point2D p = e.getPoint();
Point2D closestPoint = null;
double minDistanceSquared = Double.MAX_VALUE;
for (Point2D point : points)
{
double dd = point.distanceSq(p);
if (dd < thresholdSquared && dd < minDistanceSquared)
{
minDistanceSquared = dd;
closestPoint = point;
}
}
draggedPoint = closestPoint;
}
@Override
public void mouseReleased(MouseEvent e)
{
draggedPoint = null;
}
@Override
public void mouseMoved(MouseEvent e)
{
// Nothing to do here
}
@Override
public void mouseClicked(MouseEvent e)
{
// Nothing to do here
}
@Override
public void mouseEntered(MouseEvent e)
{
// Nothing to do here
}
@Override
public void mouseExited(MouseEvent e)
{
// Nothing to do here
}
private static Point2D difference(Point2D p0, Point2D p1)
{
double dx = p0.getX() - p1.getX();
double dy = p0.getY() - p1.getY();
return new Point2D.Double(dx, dy);
}
private static Point2D add(Point2D p0, double factor, Point2D p1)
{
double x0 = p0.getX();
double y0 = p0.getY();
double x1 = p1.getX();
double y1 = p1.getY();
return new Point2D.Double(x0 + factor * x1, y0 + factor * y1);
}
private static Point2D rotateCw(Point2D p)
{
return new Point2D.Double(p.getY(), -p.getX());
}
private static Point2D normalize(Point2D p)
{
double x = p.getX();
double y = p.getY();
double length = Math.hypot(x, y);
return new Point2D.Double(x / length, y / length);
}
// From https://github.com/javagl/Geom/blob/master/src/main/java/
// de/javagl/geom/Intersections.java
private static final double DOUBLE_EPSILON = 1e-6;
/**
* Computes the intersection of the specified lines.
*
* Ported from
* http://www.geometrictools.com/LibMathematics/Intersection/
* Wm5IntrSegment2Segment2.cpp
*
* @param s0x0 x-coordinate of point 0 of line segment 0
* @param s0y0 y-coordinate of point 0 of line segment 0
* @param s0x1 x-coordinate of point 1 of line segment 0
* @param s0y1 y-coordinate of point 1 of line segment 0
* @param s1x0 x-coordinate of point 0 of line segment 1
* @param s1y0 y-coordinate of point 0 of line segment 1
* @param s1x1 x-coordinate of point 1 of line segment 1
* @param s1y1 y-coordinate of point 1 of line segment 1
* @param relativeLocation Optional location that stores the
* relative location of the intersection point on
* the given line segments
* @param absoluteLocation Optional location that stores the
* absolute location of the intersection point
* @return Whether the lines intersect
*/
public static boolean intersect(
double s0x0, double s0y0,
double s0x1, double s0y1,
double s1x0, double s1y0,
double s1x1, double s1y1,
Point2D relativeLocation,
Point2D absoluteLocation)
{
double dx0 = s0x1 - s0x0;
double dy0 = s0y1 - s0y0;
double dx1 = s1x1 - s1x0;
double dy1 = s1y1 - s1y0;
double invLen0 = 1.0 / Math.sqrt(dx0*dx0+dy0*dy0);
double invLen1 = 1.0 / Math.sqrt(dx1*dx1+dy1*dy1);
double dir0x = dx0 * invLen0;
double dir0y = dy0 * invLen0;
double dir1x = dx1 * invLen1;
double dir1y = dy1 * invLen1;
double dot = dotPerp(dir0x, dir0y, dir1x, dir1y);
if (Math.abs(dot) > DOUBLE_EPSILON)
{
if (relativeLocation != null || absoluteLocation != null)
{
double c0x = s0x0 + dx0 * 0.5;
double c0y = s0y0 + dy0 * 0.5;
double c1x = s1x0 + dx1 * 0.5;
double c1y = s1y0 + dy1 * 0.5;
double cdx = c1x - c0x;
double cdy = c1y - c0y;
double dot0 = dotPerp(cdx, cdy, dir0x, dir0y);
double dot1 = dotPerp(cdx, cdy, dir1x, dir1y);
double invDot = 1.0/dot;
double s0 = dot1*invDot;
double s1 = dot0*invDot;
if (relativeLocation != null)
{
double n0 = (s0 * invLen0) + 0.5;
double n1 = (s1 * invLen1) + 0.5;
relativeLocation.setLocation(n0, n1);
}
if (absoluteLocation != null)
{
double x = c0x + s0 * dir0x;
double y = c0y + s0 * dir0y;
absoluteLocation.setLocation(x, y);
}
}
return true;
}
return false;
}
/**
* Returns the perpendicular dot product, i.e. the length
* of the vector (x0,y0,0)x(x1,y1,0).
*
* @param x0 Coordinate x0
* @param y0 Coordinate y0
* @param x1 Coordinate x1
* @param y1 Coordinate y1
* @return The length of the cross product vector
*/
private static double dotPerp(double x0, double y0, double x1, double y1)
{
return x0*y1 - y0*x1;
}
}
是给出的回波路径之间的距离 角很容易计算,知道我们所拥有的顶点坐标 因此,正如您所看到的,对于每个顶点,我们可以计算,从而为下一个回波路径提供新的顶点。 我想做的是生成没有自交叉部分的回波多边形,即没有带有虚线的部分。一个算法或代码将非常有帮助。多谢了。 编辑 只是添加了一段代码,生成凸多边形的回波路径,就像注释中要求的那样。
我有一组点(英国完整的邮政编码中心)。邮政编码与邮政编码扇区和邮政编码区之间存在等级关系。原来的扇区和区是毗连的。我希望推导出扇区和地区的近似边界,这样国家的任何部分都正好属于一个扇区和一个地区,所有得到的多边形理想地应该是连续的,而且(显然?)所有原点都应该在适当的多边形中。有没有合适的算法?更好的是,是否有一些适当的实现? 我想我一定解释得很差,因为我不认为这回答了我的问题。 让我们只谈部门,
我正在寻找一种方法来创建一组多边形(rechtangles),沿着一条线在多个多边形中创建一组多边形(rechtangles),并将其水平隔开,如图所示。 我尝试生成点并将其用作多边形的中点,但问题是,通过创建等间距的点光栅,除了180度之外,不可能以任何其他方向旋转。 例子 给出了一个多多边形形状的对象和由宽度和高度以及每个多边形之间的垂直和水平间距定义的多边形。多边形应仅放置在多多边形内,且不
给定两个2D多边形,如何计算将第一个带入第二个的最短平移? 假设有一个解决方案(即第一个确实适合第二个) 比起解决方案的完整性,更喜欢简单的算法。例如,如果通过假设形状有一定数量的边、是凹形等来简化算法,那么就做出这些假设 我可以想象一个蛮力解决方案,我首先计算哪些是位于初始多边形之外的违规顶点。然后迭代这些外部顶点,找到最接近每个顶点的边。那我就卡住了。从外部顶点到边缘的每个距离都会产生一个约束
返回顶点的输入数组,并且附有一些其他方法,如下面所描述 polygon.area() 返回此多边形的标定区域。如果顶点是逆时针顺序,面积为正,否则为负。 polygon.centroid() 返回一个表示此多边形的质心的两元素数组。 polygon.clip(subject) 对这个多边形剪切主题多边形。换句话说,返回一个多边形表示这个多边形和主题多边形的交集。假定剪切的多边形是逆时针方向以及凸多
为什么这工作正常: 这会产生运行时错误 错误: 这没有任何意义。第一个代码工作正常,三角形画好了,但第二个代码不行。有人能解释一下我做错了什么吗...