当前位置: 首页 > 面试题库 >

Keras仅训练特定的输出

茹高义
2023-03-14
问题内容

我正在将Kears与tensorflow一起使用,并且我有一个3输出的模型,我只想训练2个输出。

model = Model(input=input, output=[out1,out2,out3])
model.compile(loss=[loss1, loss2, loss3], optimizer=my_optimizer)

loss1(y_true, y_pred):
    return calculate_loss1(y_true, y_pred)

loss2(y_true, y_pred):
    return calculate_loss2(y_true, y_pred)

loss3(y_true, y_pred):
    return 0.0*K.mean(y_pred)

我尝试使用上面的代码来执行此操作,但是我不确定它是否可以执行我想要的操作。因此,我认为这会加总损失,并且会用该损失来训练每个输出,而我根本不希望进行训练out3。(我需要,out3因为它用于测试)。谁能告诉我如何实现这一目标或让我确信代码实际上满足了我的需求?


问题答案:

您必须创建2个这样的不同模型

model1 = Model(input=input, output=[out1,out2])
model2 = Model(input=input, output=[out1,out2,out3])

您可以同时编译两者,但只适合第一个。他们将共享各层,因此,即使没有对model2进行训练,也将具有从model1学习的权重。但是,如果out3中有一个可训练的层,但在输入与图的out1和out2之间的流中不存在,则该层将不会被训练,因此将保留其初始值。

有帮助吗?:-)



 类似资料:
  • 问题内容: 我想知道是否有可能保存经过部分训练的Keras模型并在再次加载模型后继续进行训练。 这样做的原因是,将来我将拥有更多的训练数据,并且我不想再次对整个模型进行训练。 我正在使用的功能是: 编辑1:添加了完全正常的示例 对于10个纪元后的第一个数据集,最后一个纪元的损失将为0.0748,精度为0.9863。 保存,删除和重新加载模型后,第二个数据集上训练的模型的损失和准确性分别为0.171

  • /usr/local/lib/python3.6/dist-packages/keras/backend/tensorflow_backend.py:174:不推荐使用名称tf.get_default_session。请改用tf.compat.v1.get_default_session。 /usr/local/lib/python3.6/dist-packages/keras/backend/t

  • 问题内容: 因此,我一直遵循Google的官方tensorflow指南,并尝试使用Keras构建一个简单的神经网络。但是,在训练模型时,它不使用整个数据集(具有60000个条目),而是仅使用1875个条目进行训练。有可能解决吗? 输出: 这是我一直在为此工作的原始Google colab笔记本:https ://colab.research.google.com/drive/1NdtzXHEpiN

  • 问题内容: 我的训练数据的格式为(?,15)其中?是可变长度。 创建模型时,请指定以下内容: 我的训练数据的形状为(35730,?,15)。 在python中检查这个我得到: 输出:(35730,) 输出:(513,15) 当我尝试根据训练数据拟合模型时,出现ValueError: 我只能在单个样本上使用model.train_on_batch()来训练模型。 我该如何解决?似乎keras认为我的

  • 本文向大家介绍Keras使用ImageNet上预训练的模型方式,包括了Keras使用ImageNet上预训练的模型方式的使用技巧和注意事项,需要的朋友参考一下 我就废话不多说了,大家还是直接看代码吧! 在以上代码中,我们首先import各种模型对应的module,然后load模型,并用ImageNet的参数初始化模型的参数。 如果不想使用ImageNet上预训练到的权重初始话模型,可以将各语句的中

  • 我的代码是: 我的数据如下: 我的结果是: 两个时代后它就卡在那里了。我能做些什么来防止它这么快卡住?