我刚刚开始学习数据结构,并且在进行数组插入时想知道为什么数组插入的时间复杂度为O(n)而不是O(n + 1)?
在最佳情况下,当插入在最后时,时间复杂度为O(1)。我想我们正在考虑1插入元素,因为这里没有元素被移动。在最坏的情况下,假设我们必须移动n个元素然后插入新元素,那么时间时间复杂度是否应该为O(n + 1)?n用于移动元素,1用于插入。
非常感谢您的帮助。
O(n)的任何函数也是O(n + 1),反之亦然。低阶术语本质上会被忽略,因此+1不会产生任何有意义的作用。
就像谷歌地图一样,给定一百万个经纬度坐标列表,你将如何打印距离给定位置最近的k个城市? 我在一次面试中问了这个问题。面试官说这可以在O(n)中通过使用插入排序到k来完成,而不是对整个列表进行排序,即NlogN。我在网上找到了其他答案,大多数人都说NLogN...他[面试官]正确吗?
我在GeekforGeekshttps://www.geeksforgeeks.org/minimum-number-of-jumps-to-reach-end-of-a-given-array/中检查“到达终点的最小跳跃次数”问题。我对这里提到的时间复杂度感到困惑,它是O(n^n)。 如果我看到上面的代码块,minJumps(arr,I,h)递归调用是从I=l1调用的。所以在每个递归步骤中,l(
据说 LinkedList 删除和添加操作的复杂性为 在 的情况下,它是 大小为“M”的数组列表的计算:如果我想删除第N个位置的元素,那么我可以使用index一次直接转到第N个位置(我不必遍历到第N个索引),然后我可以删除元素,直到此时复杂度为O(1),然后我必须移动其余的元素(M-N次移动),所以我的复杂度将是线性的,即O(M-N-1)。因此在最后删除或插入会给我最好的性能(如N ~ M ),而
Redis zrank。 返回存储在key处的排序集中成员的排名,分数从低到高排序。排名(或指数)是基于0的,这意味着得分最低的成员排名为0。 为什么复杂度是O(log(N))?成员按分数排序,但zank按成员查询。 我找到了一些可能是答案的东西。 A.zset由ziplist实现时 大小小于128 每个成员的大小小于64字节 所以,ziplist的大小很小,所以这不是我讨论的问题。 B.当zse
我试图为这段代码找出一个大O的紧密界限: 如果我们从内最循环开始,它将在最坏的情况下运行k=n^2次,占O(N^2)。如果语句每次j=m*i时都为真,其中m是一个任意常数。由于j从1运行到i^2,这将在m={1,2,...,i}时发生,这意味着它将在i次时为真,i最多可以是n,所以最坏的情况将是m={1,2,...,n}=n次。如果i=n,第二个循环应该有O(N^2)的最坏情况。外环具有O(N)的
查找p的伪码算法为: 假设我有一个int值的数组H[1到m],其中“p”是峰值元素,如果: 基本上,如果H【p】大于或等于其相邻元素,则H【p】为峰值。 假设数组H在开始和结束时都大于1个元素,数组为H[0到m 1],其中H[0]=H[m 1]=无穷大。因此,H[0]和H[m 1]是哨兵。然后是元素p,其中1≤ p≤ n、 是一个峰值,如果H【p-1】≤ H【p】≥ H【p 1】。 我认为渐近时间