当前位置: 首页 > 面试题库 >

CNN的卷积核是单层还是多层的?

巫马英豪
2023-03-14
本文向大家介绍CNN的卷积核是单层还是多层的?相关面试题,主要包含被问及CNN的卷积核是单层还是多层的?时的应答技巧和注意事项,需要的朋友参考一下

描述网络模型中某层的厚度,通常用名词通道channel数或者特征图feature map数。不过人们更习惯把作为数据输入的前层的厚度称之为通道数(比如RGB三色图层称为输入通道数为3),把作为卷积输出的后层的厚度称之为特征图数。

卷积核的厚度H, 一般等于前层厚度M(输入通道数或feature map数). 特殊情况M > H。

卷积核的个数N, 一般等于后层厚度(后层feature maps数,因为相等所以也用N表示)。

卷积核通常从属于后层,为后层提供了各种查看前层特征的视角,这个视角是自动形成的。

卷积核厚度等于1时为2D卷积,对应平面点相乘然后把结果加起来,相当于点积运算;

卷积核厚度大于1时为3D卷积,每片分别平面点求卷积,然后把每片结果加起来,作为3D卷积结果;

1x1卷积属于3D卷积的一个特例,有厚度无面积, 直接把每片单个点乘以权重再相加。

归纳之,卷积的意思就是把一个区域,不管是一维线段,二维方阵,还是三维长方块,全部按照卷积核的维度形状,对应逐点相乘再求和,浓缩成一个标量值也就是降到零维度,作为下一层的一个feature map的一个点的值! 可以比喻一群渔夫坐一个渔船撒网打鱼,鱼塘是多层水域,每层鱼儿不同。 船每次移位一个stride到一个地方,每个渔夫撒一网,得到收获,然后换一个距离stride再撒,如此重复直到遍历鱼塘。 A渔夫盯着鱼的品种,遍历鱼塘后该渔夫描绘了鱼塘的鱼品种分布; B渔夫盯着鱼的重量,遍历鱼塘后该渔夫描绘了鱼塘的鱼重量分布; 还有N-2个渔夫,各自兴趣各干各的; 最后得到N个特征图,描述了鱼塘的一切!

 类似资料:
  • 卷积神经网络有一个批量过滤器, 持续不断的在图片上滚动收集图片里的信息,每一次收集的时候都只是收集一小块像素区域, 然后把收集来的信息进行整理, 这时候整理出来的信息有了一些实际上的呈现, 比如这时的神经网络能看到一些边缘的图片信息, 然后在以同样的步骤, 用类似的批量过滤器扫过产生的这些边缘信息, 神经网络从这些边缘信息里面总结出更高层的信息结构,比如说总结的边缘能够画出眼睛,鼻子等等. 再经过

  • Convolution1D层 keras.layers.convolutional.Convolution1D(nb_filter, filter_length, init='uniform', activation='linear', weights=None, border_mode='valid', subsample_length=1, W_regularizer=None, b_regu

  • Conv1D层 keras.layers.convolutional.Conv1D(filters, kernel_size, strides=1, padding='valid', dilation_rate=1, activation=None, use_bias=True, kernel_initializer='glorot_uniform', bias_initializer='zero

  • 问题是卷积神经网络的数学细节。假设网络的体系结构(其目标是图像分类)是这样的 输入图像32x32 第一个隐藏层3x28x28(由3个大小为5x5的滤波器卷积而成,步幅=0,无填充),随后是激活 池化层(在2x2区域上池化),产生3x14x14输出 第二隐藏层6x10x10(由6个大小为5x5的滤波器卷积而成,步幅=0,无填充),随后激活 池化层(在2x2区域上池化),产生6x5x5输出 具有100

  • 我了解卷积核的工作原理及其在神经网络中的作用。然而,我不确定在典型的CNN中,你是否会预先定义卷积核是什么,或者这是否是CNN“弄明白”的东西例如,在制作CNN时,您是否可以简单地定义一些5x5卷积内核,如下所示: 或者你会简单地告诉CNN找到一个5x5内核,然后在训练后它会想出一个好的5x5内核?

  • 根据文档网站(https://keras.io/layers/convolutional/)keras卷积层的内核大小定义为高度x宽度: kernel\u size:一个整数或2个整数的元组/列表,指定2D卷积窗口的高度和宽度。可以是单个整数,以便为所有空间标注指定相同的值。 然而,在代码文档中,其定义正好相反: kernel_size:2个整数的整数或元组/列表,指定2D卷积窗口的宽度和高度。可