解答:
combiner是reduce的实现,在map端运行计算任务,减少map端的输出数据。
作用就是优化。
但是combiner的使用场景是mapreduce的map输出结果和reduce输入输出一样。
partition的默认实现是hashpartition,是map端将数据按照reduce个数取余,进行分区,不同的reduce来copy自己的数据。
partition的作用是将数据分到不同的reduce进行计算,加快计算效果。
本文向大家介绍请简述mapreduce中,combiner,partition作用?相关面试题,主要包含被问及请简述mapreduce中,combiner,partition作用?时的应答技巧和注意事项,需要的朋友参考一下 在MapReduce整个过程中,combiner是可有可无的,需要是自己的情况而定,如果只是单纯的对map输出的key-value进行一个统计,则不需要进行combiner,c
我正在学习一些MapReduce,但是我遇到了一些问题,情况是这样的:我有两个文件:“users”包含一个用户列表,其中包含一些用户数据(性别、年龄、国家等)...)文件看起来像这样: “歌曲”包含所有用户收听的歌曲的数据(用户ID,收听日期和时间,艺术家ID,艺术家姓名,歌曲ID,歌曲标题): 目标是在某些国家找到k首最受欢迎的歌曲。k和输入中提供的国家列表。 我决定为映射器使用Multiple
一、背景 最近总在弄MR的东西,所以写点关于这个方面的内容,总结一下吧 二、流程描述 说实话,文字描述比较苍白,画了个图,贴出来,大家看看,有问题欢迎指出 三、总结 1、值得提出的是,一个map结束就马上会进行分区的操作。并非是等所有的map都结束才做分区的操作。 2、分组的操作是对key的值进行比较分组。(可以是复合key,也可以是单一的key) 3、关于job.setSortComparato
一、作用 1、combiner最基本是实现本地key的聚合,对map输出的key排序,value进行迭代。如下所示: map: (K1, V1) → list(K2, V2) combine: (K2, list(V2)) → list(K2, V2) reduce: (K2, list(V2)) → list(K3, V3) 2、combiner还具有类似本地的reduce功能. 例如hadoo
一、背景 1、在Hive Select查询中一般会扫描整个表内容,会消耗很多时间做没必要的工作。有时候只需要扫描表中关心的一部分数据,因此建表时引入了partition概念。 2、分区表指的是在创建表时指定的partition的分区空间。 3、如果需要创建有分区的表,需要在create表的时候调用可选参数partitioned by,详见表创建的语法结构。 二、技术细节 1、一个表可以拥有一个或者
本文向大家介绍 hadoop中Combiner的作用?相关面试题,主要包含被问及 hadoop中Combiner的作用?时的应答技巧和注意事项,需要的朋友参考一下 解答: combiner是reduce的实现,在map端运行计算任务,减少map端的输出数据。 作用就是优化。 但是combiner的使用场景是mapreduce的map和reduce输入输出一样。