共轭梯度法是介于梯度下降与牛顿法之间的一个方法,它仅需要求一阶导数,又避免了收敛慢的缺点,避免了牛顿法需要计算海森逆矩阵的缺点
本文向大家介绍什么是共轭先验分布?相关面试题,主要包含被问及什么是共轭先验分布?时的应答技巧和注意事项,需要的朋友参考一下 参考回答: 假设为总体分布中的参数,的先验密度函数为,而抽样信息算得的后验密度函数与具有相同的函数形式,则称为的共轭先验分布。
本文向大家介绍梯度消失,梯度爆炸的问题,相关面试题,主要包含被问及梯度消失,梯度爆炸的问题,时的应答技巧和注意事项,需要的朋友参考一下 参考回答: 激活函数的原因,由于梯度求导的过程中梯度非常小,无法有效反向传播误差,造成梯度消失的问题。
在本节中,我们将介绍梯度下降(gradient descent)的工作原理。虽然梯度下降在深度学习中很少被直接使用,但理解梯度的意义以及沿着梯度反方向更新自变量可能降低目标函数值的原因是学习后续优化算法的基础。随后,我们将引出随机梯度下降(stochastic gradient descent)。 一维梯度下降 我们先以简单的一维梯度下降为例,解释梯度下降算法可能降低目标函数值的原因。假设连续可导
梯度下降法 梯度下降法(Gradient descent)或最速下降法(steepest descent)是求解无约束最优化问题的一种常用方法。 假设$$f(x)$$是$$R^n$$上具有一阶连续偏导数的函数。要求解的无约束最优化问题是: $$ \displaystyle\min_{x\in R^n} f(x) $$ $$x^*$$表示目标函数的极小值点。 梯度下降是一种迭代算法。选取适当的初始值
本文向大家介绍梯度消失相关面试题,主要包含被问及梯度消失时的应答技巧和注意事项,需要的朋友参考一下 参考回答: 在神经网络中,当前面隐藏层的学习速率低于后面隐藏层的学习速率,即随着隐藏层数目的增加,分类准确率反而下降了。这种现象叫做消失的梯度问题。
我使用的是内核密度估计(KDE)的SciPy实现(http://docs.SciPy.org/doc/SciPy/reference/generated/SciPy.stats.gaussian_kde.html),到目前为止工作良好。然而,我现在想要获得KDE在一个特定点的梯度。 我已经查看了库的Python源代码,但还没有弄清楚如何轻松实现这个功能。有人知道这样做的方法吗?