当前位置: 首页 > 面试题库 >

张量不是该图的元素

阴雪风
2023-03-14
问题内容

我收到这个错误

‘ValueError:Tensor Tensor(“ Placeholder:0”,shape =(1,1),dtype =
int32)不是此图的元素。’

不使用,代码运行正常with tf.Graph(). as_default():。但是我需要M.sample(...)多次调用,每次之后内存都不可用session.close()。可能存在内存泄漏,但不确定在哪里。

我想还原一个预先训练的神经网络,将其设置为默认图,并在默认图上对其进行多次测试(例如10000),而不必每次都使其变大。

代码是:

def SessionOpener(save):
    grph = tf.get_default_graph()
    sess = tf.Session(graph=grph)
    ckpt = tf.train.get_checkpoint_state(save)
    saver = tf.train.import_meta_graph('./predictor/save/model.ckpt.meta')
    if ckpt and ckpt.model_checkpoint_path:
        saver.restore(sess, ckpt.model_checkpoint_path)
        tf.global_variables_initializer().run(session=sess)
    return sess

def LoadPredictor(save):
    with open(os.path.join(save, 'config.pkl'), 'rb') as f:
        saved_args = cPickle.load(f)
    with open(os.path.join(save, 'words_vocab.pkl'), 'rb') as f:
        words, vocab = cPickle.load(f)
    model = Model(saved_args, True)
    return model, words, vocab

if __name__ == '__main__':
    Save = './save'
    M, W, V = LoadPredictor(Save)
    Sess = SessionOpener(Save)
    word = M.sample(Sess, W, V, 1, str(123), 2, 1, 4)
    Sess.close()

模型是:

class Model():
    def __init__(self, args, infer=False):
        with tf.Graph().as_default():
            self.args = args
            if infer:
                args.batch_size = 1
                args.seq_length = 1

            if args.model == 'rnn':
                cell_fn = rnn.BasicRNNCell
            elif args.model == 'gru':
                cell_fn = rnn.GRUCell
            elif args.model == 'lstm':
                cell_fn = rnn.BasicLSTMCell
            else:
                raise Exception("model type not supported: {}".format(args.model))

            cells = []
            for _ in range(args.num_layers):
                cell = cell_fn(args.rnn_size)
                cells.append(cell)

            self.cell = cell = rnn.MultiRNNCell(cells)

            self.input_data = tf.placeholder(tf.int32, [args.batch_size, args.seq_length])
            self.targets = tf.placeholder(tf.int32, [args.batch_size, args.seq_length])
            self.initial_state = cell.zero_state(args.batch_size, tf.float32)
            self.batch_pointer = tf.Variable(0, name="batch_pointer", trainable=False, dtype=tf.int32)
            self.inc_batch_pointer_op = tf.assign(self.batch_pointer, self.batch_pointer + 1)
            self.epoch_pointer = tf.Variable(0, name="epoch_pointer", trainable=False)
            self.batch_time = tf.Variable(0.0, name="batch_time", trainable=False)
            tf.summary.scalar("time_batch", self.batch_time)

            def variable_summaries(var):
            """Attach a lot of summaries to a Tensor (for TensorBoard visualization)."""
                with tf.name_scope('summaries'):
                    mean = tf.reduce_mean(var)
                    tf.summary.scalar('mean', mean)
                    tf.summary.scalar('max', tf.reduce_max(var))
                    tf.summary.scalar('min', tf.reduce_min(var))


            with tf.variable_scope('rnnlm'):
                softmax_w = tf.get_variable("softmax_w", [args.rnn_size, args.vocab_size])
                variable_summaries(softmax_w)
                softmax_b = tf.get_variable("softmax_b", [args.vocab_size])
                variable_summaries(softmax_b)
                with tf.device("/cpu:0"):
                    embedding = tf.get_variable("embedding", [args.vocab_size, args.rnn_size])
                    inputs = tf.split(tf.nn.embedding_lookup(embedding, self.input_data), args.seq_length, 1)
                    inputs = [tf.squeeze(input_, [1]) for input_ in inputs]

            def loop(prev, _):
                prev = tf.matmul(prev, softmax_w) + softmax_b
                prev_symbol = tf.stop_gradient(tf.argmax(prev, 1))
                return tf.nn.embedding_lookup(embedding, prev_symbol)

            outputs, last_state = legacy_seq2seq.rnn_decoder(inputs, self.initial_state, cell, loop_function=loop if infer else None, scope='rnnlm')
            output = tf.reshape(tf.concat(outputs, 1), [-1, args.rnn_size])
            self.logits = tf.matmul(output, softmax_w) + softmax_b
            self.probs = tf.nn.softmax(self.logits)
            loss = legacy_seq2seq.sequence_loss_by_example([self.logits],
                    [tf.reshape(self.targets, [-1])],
                    [tf.ones([args.batch_size * args.seq_length])],
                    args.vocab_size)
            self.cost = tf.reduce_sum(loss) / args.batch_size / args.seq_length
            tf.summary.scalar("cost", self.cost)
            self.final_state = last_state
            self.lr = tf.Variable(0.0, trainable=False)
            tvars = tf.trainable_variables()
            grads, _ = tf.clip_by_global_norm(tf.gradients(self.cost, tvars),
                args.grad_clip)
            optimizer = tf.train.AdamOptimizer(self.lr)
            self.train_op = optimizer.apply_gradients(zip(grads, tvars))

    def sample(self, sess, words, vocab, num=200, prime='first all', sampling_type=1, pick=0, width=4):
        def weighted_pick(weights):
            t = np.cumsum(weights)
            s = np.sum(weights)
            return(int(np.searchsorted(t, np.random.rand(1)*s)))

        ret = ''
        if pick == 1:
            state = sess.run(self.cell.zero_state(1, tf.float32))

            if not len(prime) or prime == ' ':
                prime  = random.choice(list(vocab.keys()))
            for word in prime.split()[:-1]:
                x = np.zeros((1, 1))
                x[0, 0] = vocab.get(word,0)
                feed = {self.input_data: x, self.initial_state:state}
                [state] = sess.run([self.final_state], feed)

            ret = prime
            word = prime.split()[-1]
            for n in range(num):
                x = np.zeros((1, 1))
                x[0, 0] = vocab.get(word, 0)
                feed = {self.input_data: x, self.initial_state:state}
                [probs, state] = sess.run([self.probs, self.final_state], feed)
                p = probs[0]

                if sampling_type == 0:
                    sample = np.argmax(p)
                elif sampling_type == 2:
                    if word == '\n':
                        sample = weighted_pick(p)
                    else:
                        sample = np.argmax(p)
                else: # sampling_type == 1 default:
                    sample = weighted_pick(p)

                ret = words[sample]
        return ret

输出为:

Traceback (most recent call last):
  File "/rcg/software/Linux/Ubuntu/16.04/amd64/TOOLS/TENSORFLOW/1.2.1-GPU-PY352/lib/python3.5/site-packages/tensorflow/python/client/session.py", line 942, in _run
    allow_operation=False)
  File "/rcg/software/Linux/Ubuntu/16.04/amd64/TOOLS/TENSORFLOW/1.2.1-GPU-PY352/lib/python3.5/site-packages/tensorflow/python/framework/ops.py", line 2584, in as_graph_element
    return self._as_graph_element_locked(obj, allow_tensor, allow_operation)
  File "/rcg/software/Linux/Ubuntu/16.04/amd64/TOOLS/TENSORFLOW/1.2.1-GPU-PY352/lib/python3.5/site-packages/tensorflow/python/framework/ops.py", line 2663, in _as_graph_element_locked
    raise ValueError("Tensor %s is not an element of this graph." % obj)
ValueError: Tensor Tensor("Placeholder:0", shape=(1, 1), dtype=int32) is not an element of this graph.

问题答案:

创建时Model,会话尚未还原。定义的所有占位符,变量和操作Model.__init__都放置在 新图中
,这使自身成为with块内的默认图。这是关键行:

with tf.Graph().as_default():
  ...

这意味着此tf.Graph()equals实例等于blocktf.get_default_graph()内部实例with但不 等于
它之前或之后 。从这一刻起,存在两个不同的图。

稍后创建会话并将图形还原到其中时,您将无法访问该tf.Graph()会话中的上一个实例。这是一个简短的示例:

with tf.Graph().as_default() as graph:
  var = tf.get_variable("var", shape=[3], initializer=tf.zeros_initializer)

# This works
with tf.Session(graph=graph) as sess:
  sess.run(tf.global_variables_initializer())
  print(sess.run(var))  # ok because `sess.graph == graph`

# This fails
saver = tf.train.import_meta_graph('/tmp/model.ckpt.meta')
with tf.Session() as sess:
  saver.restore(sess, "/tmp/model.ckpt")
  print(sess.run(var))   # var is from `graph`, not `sess.graph`!

处理此问题的最佳方法是为所有节点(例如'input''target'等)命名,保存模型,然后按名称在 还原的 图中查找节点,如下所示:

saver = tf.train.import_meta_graph('/tmp/model.ckpt.meta')
with tf.Session() as sess:
  saver.restore(sess, "/tmp/model.ckpt")      
  input_data = sess.graph.get_tensor_by_name('input')
  target = sess.graph.get_tensor_by_name('target')

此方法保证所有节点都将来自会话中的图。



 类似资料:
  • 我正在尝试实现tensorflow回归模型,我的数据形状是train_X=(200,4)和train_Y=(200,)。我得到的形状错误,这是我的一段代码,请任何人都能提到我在哪里做错了。 df=pd。读取\u csv('all.csv') df=df。下降(“时间”,轴=1) 打印(df.descripe())#以了解数据集 列车Y=df[“功率”] 列车X=df。下降('功率',轴=1) 列车

  • 更新:在我的个人电脑和谷歌云上测试相同的代码,使用tenstorflow gpu 1.13.1工作。 使用TensorFlow估计器和运行train_and_evaluate给我以下错误消息: "ValueError: Tensor("Const: 0",form=(3,),dtype=Float32)必须来自与Tensor("ParallelMapDataset: 0",form=(),dtyp

  • 我试图在张量流图中使用条件随机场损失。 我正在执行序列标记任务: 我有一系列元素作为输入。每个元素可以属于三个不同类中的一个。类以一种热编码方式表示:属于类0的元素由向量[表示。 我的输入标签(y)有大小(xx)。 我的网络产生相同形状的日志。 假设我所有的序列都有长度4。 这是我的代码: 我得到以下错误: 文件“/usr/local/lib/python2.7/dist-packages/ten

  • 译者:阿远 每个 torch.Tensor 对象都有以下几个属性: torch.dtype, torch.device, 和 torch.layout。 torch.dtype class torch.dtype torch.dtype 属性标识了 torch.Tensor的数据类型。PyTorch 有八种不同的数据类型: Data type dtype Tensor types 32-bit

  • 问题内容: Tensorflow中的图形对象具有一种称为“ get_tensor_by_name(name)”的方法。反正有没有得到有效张量名称的列表? 如果不是,那么有人从这里知道预训练模型inception-v3的有效名称吗?从他们的示例pool_3开始,它是一个有效的张量,但是所有这些列表都很好。我看了一下所提到的文件,其中一些层似乎与表1中的大小相对应,但并非全部。 问题答案: 本文没有准

  • 矩阵和标量可用几种不同方法合并。例如,通过从矩阵中每元素减去同一个数,矩阵就减去了一个标量。我们的魔方中元素的平均值是8.5,因此 B = A - 8.5 组成一个列向量和为零的矩阵。 B = 7.5 -5.5 -6.5 4.5 -3.5 1.5 2.5 -0.5 0.5 -2.5 -1.5