我一直在尝试使用Google发布的经过预先训练的inception_resnet_v2模型。我正在使用他们的模型定义(https://github.com/tensorflow/models/blob/master/slim/nets/inception_resnet_v2.py)和给定的检查点(http://download.tensorflow.org/models/inception_resnet_v2_2016_08_30.tar
.gz
)将模型加载到tensorflow中,如下所示[下载提取检查点文件并下载示例图像dog.jpg和panda.jpg来测试此代码]-
import tensorflow as tf
slim = tf.contrib.slim
from PIL import Image
from inception_resnet_v2 import *
import numpy as np
checkpoint_file = 'inception_resnet_v2_2016_08_30.ckpt'
sample_images = ['dog.jpg', 'panda.jpg']
#Load the model
sess = tf.Session()
arg_scope = inception_resnet_v2_arg_scope()
with slim.arg_scope(arg_scope):
logits, end_points = inception_resnet_v2(input_tensor, is_training=False)
saver = tf.train.Saver()
saver.restore(sess, checkpoint_file)
for image in sample_images:
im = Image.open(image).resize((299,299))
im = np.array(im)
im = im.reshape(-1,299,299,3)
predict_values, logit_values = sess.run([end_points['Predictions'], logits], feed_dict={input_tensor: im})
print (np.max(predict_values), np.max(logit_values))
print (np.argmax(predict_values), np.argmax(logit_values))
但是,此模型代码的结果并未给出预期的结果(与输入图像无关,将预测类别918)。有人可以帮助我了解我要去哪里哪里吗?
盗梦空间网络期望输入图像具有从[-1,1]缩放的颜色通道。如这里所见。
您可以使用现有的预处理,也可以在示例中自行缩放图像:将图像im = 2*(im/255.0)-1.0
馈送到网络之前。
如果不缩放比例,则输入[0-255]会比网络预期的要大得多,并且所有偏差都会非常强烈地预测类别918(漫画书)。
TensorFlow-Lite Android演示与它提供的原始模型mobileNet_quant_v1_224.tflite一起工作。参见:https://github.com/tensorflow/tensorflow/tree/master/tensorflow/contrib/lite 他们还在这里提供了其他预训练的lite模型:https://github.com/tensorflow/
本文向大家介绍如何使用Tensorflow训练'Word2Vec'算法?,包括了如何使用Tensorflow训练'Word2Vec'算法?的使用技巧和注意事项,需要的朋友参考一下 Tensorflow是Google提供的一种机器学习框架。它是一个开放源代码框架,与Python结合使用以实现算法,深度学习应用程序等等。它用于研究和生产目的。它具有优化技术,可帮助快速执行复杂的数学运算。 这是因为它使
文章信息 通过本教程,你可以掌握技能:使用预先训练的词向量和卷积神经网络解决一个文本分类问题 本文代码已上传到Github 本文地址:http://blog.keras.io/using-pre-trained-word-embeddings-in-a-keras-model.html 本文作者:Francois Chollet 什么是词向量? ”词向量”(词嵌入)是将一类将词的语义映射到向量空间
问题内容: 我是TensorFlow的新手。我正在寻找有关图像识别的帮助,可以在其中 训练自己的图像 数据集。 有没有训练新数据集的示例? 问题答案: 如果您对如何在TensorFlow中输入自己的数据感兴趣,可以查看本教程。 我也写与CS230的最佳做法指南在斯坦福这里。 新答案(带有)和带有标签 随着in的引入,我们可以创建一批没有占位符且没有队列的图像。步骤如下: 创建一个包含图像文件名的列
当我在容器tensorflow/tensorflow:LastGPU中运行tensorflow映像训练作业时,它不工作。 错误消息: GPU info: nvidia-smi周一11月26 07:48:59 2018 ----------------------------------------------------------------------------- | NVIDIA-SMI
本文向大家介绍TensorFlow实现随机训练和批量训练的方法,包括了TensorFlow实现随机训练和批量训练的方法的使用技巧和注意事项,需要的朋友参考一下 TensorFlow更新模型变量。它能一次操作一个数据点,也可以一次操作大量数据。一个训练例子上的操作可能导致比较“古怪”的学习过程,但使用大批量的训练会造成计算成本昂贵。到底选用哪种训练类型对机器学习算法的收敛非常关键。 为了Tensor