Augustus指南(Trainning部分)
目录
Augustus指南
官方 Tutorial Index
Input:
Trainning:
Prediction
Output:
可能用到的其他软件
Trainning Augustus
特点:官方介绍
Input:
Trainning:
已知物种序列
核酸序列:fasta格式 ( genome.fa )
蛋白序列:fasta格式 ( proteins.aa )
Prediction
未知基因组序列
核酸序列:fasta格式 ( NewGenome.fa )
Output:
可能用到的其他软件
Scipio
下载地址中下载Scipio Version 1.4,压缩包中包括perl文件和说明文件
Scipio是利用蛋白序列标记出基因组结构的软件,提供核酸序列和蛋白序列后,它可以为你解析出基因的结构。它基于BLAT的序列比对功能。scipio可以很好地跨contigs比对。
用途包括:
检测序列assembly的正确性
识别外显子区域,可变剪切
用已知物种蛋白序列描述未知物种的基因组结构
Scipio依赖:perl中的YAML module
Ubuntu安装yaml-perl命令:
sudo apt-get install libyaml-perl
Scipio依赖:BLAT 下载地址,下载后的文件中有数个可执行文件,请添加进环境变量中,方便Scipio直接调用
Blat,全称 The BLAST-Like Alignment Tool,可以称为"类BLAST 比对工具",对于DNA序列,BLAT是用来设计寻找95%及以上相似至少40个碱基的序列。对于蛋白序列,BLAT是用来设计寻找80%及以上相似至少20个氨基酸的序列。速度快,共线性输出结果简单易读。Blat 把相关的呈共线性的比对结果连接成为更大的 比对结果,从中也可以很容易的找到 exons 和 introns。
Trainning Augustus
重要提示:如果是第一次training,按照下面所述的步骤可以正常完成,但是如果效果不佳,官方介绍中有一些小经验,本文没有包含这部分内容
Augustus基于Hidden-Markov Model(隐马尔科夫链模型)的预测方法,因此需要一个已经研究清楚的物种进行training(学习)之后再对新物种进行prediction(预测),用于trainning的物种应该和需要预测的物种具有较近的亲缘关系或者就是本物种。
Trainning的实质是用已知的知识调整模型中的种种参数,因此一般已知的知识必须包含各种可能的情况。具体地说,在预测基因的模型中,用于training的数据就必须拥有是基因的序列以及不是基因的序列(基因间隔区,内含子等)。
Trainning的数据会被分为两部分,一部分用于Trainning,另一部分用于检测调整参数后的模型。前者称为training set,后者称为test set。
作为用于training Augustus的已知信息,一般可以有以下几种:
该物种已经存在的基因结构信息(比如:GenBank中的数据)
该物种ESTs信息加上相对于的基因组信息(可使用PASA)
该物种de novo组装的RNA-seq数据加上对应的基因组数据
该物种已知的蛋白序列和对应的基因组数据
近源物种的基因结构信息
已经Trainning过的模型保存参数集后可以反复使用
核酸序列
CDS编码区域的序列坐标信息
UTR信息
1.1 Run Scipio
scipio.1.4.pl --blat_output=prot.vs.genome.psl genome.fa proteins.aa > scipio.yaml # takes ~7m
scipio.yaml包含了每个蛋白alignment的细节,可用于下一步提取
输入的基因组5M,耗时约7min
–blat_output=prot.vs.genome.psl的含义就是记录时间。
genome.fa和proteins.aa为fasta格式。
1.2 Extract a GFF file,从scipio.yaml中提取GFF (General Feature Format) 基因结构文件
cat scipio.yaml | yaml2gff.1.4.pl > scipio.scipiogff
scipiogff2gff.pl --in=scipio.scipiogff --out=scipio.gff
cat scipio.yaml | yaml2log.1.4.pl > scipio.log #产生log文件
scipio.gff文件是我们所希望得到的GFF文件,log文件可以帮助检测是否每个蛋白都得到标注。
scipio.gff长这样:
chr2R Scipio CDS 900562 900621 1.000 + 0 transcript_id “392”
chr2R Scipio CDS 904518 904880 1.000 + 0 transcript_id “392”
chr2R Scipio CDS 904940 905131 1.000 + 0 transcript_id “392”
chr2R Scipio CDS 905195 905263 1.000 + 0 transcript_id “392”
chr2R Scipio CDS 3595076 3596041 1.000 + 0 transcript_id “2517”
…
1.3 可选步骤 可视化基因结构(GBrowse)
GBrowse 下载并配置GBrowse,将GFF文件转化成GBrowse可读的文件。
1.4 将GFF文件转化成Genbank格式的文件
Augustus的etrainning学习软件需要输入Genbank格式的文件,这种文件包含了:
核酸序列
CDS编码区域的序列坐标信息
UTR信息
由于大部分的基因结构信息都是GFF或GTF格式,Augustus提供了gff2gbSmallDNA.pl进行格式转化
gff2gbSmallDNA.pl scipio.gff genome.fa 1000 genes.raw.gb
整合gff文件和fasta文件,genes.raw.gb文件中将会有每个基因序列和其1000bp的上下游基因间隔序列。
1.5 去除不适合trainning的基因序列
genes.raw.gb文件已经符合Augustus的要求,但是其中可能包含:
可变剪切的基因
缺失启示密码子的基因
缺失终止密码子的基因
非正常的终止密码子(in-frame stop codons)
这些序列不适合用于软件的trainning,所以最好去除
etraining --species=generic --stopCodonExcludedFromCDS=true genes.raw.gb 2> train.err
得到问题序列文件train.err
–stopCodonExcludedFromCDS=true选项指将gb文件中的终止密码子视为cds中的一部分,这个选项需要视gb文件的来源而定,非scipio来源的文件可能需要设置为false
train.err长这样:
gene 186 transcr. 1 in sequence chr2R_549753-555284: Initial exon has length < 3!
gene 461 transcr. 1 in sequence chr2R_1034318-1036751: Initial Exon doesn’t begin with start codon.
gene 567 transcr. 1 in sequence chr2R_1198437-1201521: Initial Exon doesn’t begin with start codon.
gene 4537 transcr. 1 in sequence chr2R_1354359-1361857: Initial Exon doesn’t begin with start codon.
gene 4783 transcr. 1 in sequence chr2R_1669860-1673241: Terminal exon doesn’t end in stop codon. Variable stopCodonExcludedFromCDS set right?
gene 5161 transcr. 1 in sequence chr2R_2043765-2046183: Single exon gene doesn’t begin with atg codon but with ccc
gene 6319 transcr. 1 in sequence chr2R_3734070-3735386: Initial Exon doesn’t begin with start codon.
gene 3577 transcr. 1 in sequence chr2R_4767472-4770826: Initial Exon doesn’t begin with start codon.
使用下面的命令来筛选掉这些问题序列:
cat train.err | perl -pe ‘s/.in sequence (\S+): ./$1/’ > badgenes.lst
filterGenes.pl badgenes.lst genes.raw.gb > genes.gb
grep -c “LOCUS” genes.raw.gb genes.gb
badgenes.lst为问题基因序列
genes.gb为没有问题的基因,依然是gb格式
randomSplit.pl genes.gb 100
该命令会生成genes.gb.test文件,它包含100条序列。
同时会生成genes.gb.trains文件,包含剩下的序列。
为了满足test的统计学意义,test set必须足够大(100-200 genes),才能起到检测作用。
test set的选择必须满足随机,不能只是选择文件最前面100个或者最后面100个genes
randomSplit.pl是Augustus中包含的软件
3. 为你的物种产生meta参数文件
模型中有两类参数:meta parameters 和 parameters(一般参数)。
前者包括拼接位点模型窗口的大小(the size of the window of the splice site models)、马尔科夫模型顺序(the order of the Markov model)等;
后者则是比如拼接位点模式的分布(the distribution of splice site patterns)、编码区非编码区k-mer概率(the k-mer probabilities of coding and noncoding regions)等。
一般来说meta parameters决定了parameters的算法,而且meta的数量比较少,而parameters则非常多。
Training本质是调整模型中的parameters,但是不会改变meta parameters。
new_species.pl --species=bug
假设我们的物种叫bug
这条命令会在环境变量AUGUSTUS_CONFIG_PATH指定的位置建立一系列文件和文件夹
就像这样:
creating directory /home/mario/augustus/trunk/config/species/bug/ …
creating /home/mario/augustus/trunk/config/species/bug/bug_parameters.cfg …
creating /home/mario/augustus/trunk/config/species/bug/bug_weightmatrix.txt …
creating /home/mario/augustus/trunk/config/species/bug/bug_metapars.cfg …
…
bug_parameters.cfg文件包含了meta parameters和parameters,还包括一些对output文件输出的控制选项。
编辑bug_parameters.cfg文件,将stopCodonExcludedFromCDS选项改为ture
etraining --species=bug genes.gb.train
这条命令将会在环境变量AUGUSTUS_CONFIG_PATH指定的位置$AUGUSTUS_CONFIG_PATH/species/bug建立或者更新一些文件,这些文件是exon, intron和intergenic region的parameter文件(training的结果文件)
ls -ort $AUGUSTUS_CONFIG_PATH/species/bug/
展示出与模型相关的各个参数保存文件,
其中:bug_{intron,exon,igenic}.pbl是新生成的文件
4.2 Testing
那么,我们现在就可以使用之前划分出来的test set来检测Trainning的效果
Test set的文件为genes.gb.train
augustus --species=bug genes.gb.test | tee firsttest.out # takes ~1m
这条命令对genes.gb.test中的所有核酸序列信息进行了预测,这里不会使用其中的结构信息的。
之后又将预测信息和gb文件给出的结构信息进行了比较,从而评价trainning的模型。
产生文件为firsttest.out*
grep -A 22 Evaluation firsttest.out
该命令展示了评价部分,输出这样的表格:
******* Evaluation of gene prediction *******
---------------------------------------------
| sensitivity | specificity |
---------------------------------------------|
nucleotide level | 0.975 | 0.89 |
---------------------------------------------/
----------------------------------------------------------------------------------------------------------
| #pred | #anno | | FP = false pos. | FN = false neg. | | |
| total/ | total/ | TP |--------------------|--------------------| sensitivity | specificity |
| unique | unique | | part | ovlp | wrng | part | ovlp | wrng | | |
----------------------------------------------------------------------------------------------------------|
| | | | 115 | 76 | | |
exon level | 511 | 472 | 396 | ------------------ | ------------------ | 0.839 | 0.775 |
| 511 | 472 | | 40 | 5 | 70 | 43 | 3 | 30 | | |
----------------------------------------------------------------------------------------------------------/
----------------------------------------------------------------------------
transcript | #pred | #anno | TP | FP | FN | sensitivity | specificity |
----------------------------------------------------------------------------|
gene level | 118 | 100 | 53 | 65 | 47 | 0.53 | 0.449 |
----------------------------------------------------------------------------/
表格中有三个子表格:
nucleotide level,sensitivity(预测到的百分率),specificity(其中正确的百分率)
exon level, #pred total/unique(预测得到unique外显子总数),#anno total/unique(实际unique外显子总数),TP(正确的预测),FP(假阳性),FN(假阴性)
gene level
100个基因中,预测到53个
83.9%的外显子被预测到
77.5%的外显子预测成功
5. optimize_augustus.pl的优化
脚本optimize_augustus.pl可以通过不断迭代Tranning和Testing的过程,根据模型评价自动修改*_parameters.cfg文件中的meta parameters,使meta parameters的取值最优。
这个脚本的运行会非常费时间,而且最终的效果一般只能提高准确度几个百分点,慎重使用
在本例中Trainning基因组越5M,耗时越1d
使用此脚本augustus和etraining命令必须在环境变量中
5.1 自动调整meta parameters
optimize_augustus.pl --species=bug genes.gb.train # takes ~1d
本句命令最好加上nohup
命令完成后,meta parameters调整完毕。
5.2 retraining Augustus
meta parameters调整好后必须重新Trainning模型,否则没有任何意义。
etraining --species=bug genes.gb.train
同样你可以进行检验
augustus --species=bug genes.test.gb
如果此时你的gene level的sensitivity还是低于20%说明Trainning set不够大,请添加数据。
如果你获得了满意的Trainning结果,请开始prediction吧