@(Hadoop & Spark)[machine learning|algorithm|statistics|Spark]
Topic: Updater - SquaredL2Updater
Bishop CM. Pattern Recognition and Machine Learning. (Jordan M, Kleinberg J, Schölkopf B, eds.). Springer; 2006:738. doi:10.1117/1.2819119. Page144 - Regulariz ed least squares
/**
* :: DeveloperApi ::
* Updater for L2 regularized problems.
* R(w) = 1/2 ||w||^2
* Uses a step-size decreasing with the square root of the number of iterations.
*/
@DeveloperApi
class SquaredL2Updater extends Updater {
override def compute(
weightsOld: Vector,
gradient: Vector,
stepSize: Double,
iter: Int,
regParam: Double): (Vector, Double) = {
// add up both updates from the gradient of the loss (= step) as well as
// the gradient of the regularizer (= regParam * weightsOld)
// w' = w - thisIterStepSize * (gradient + regParam * w)
// w' = (1 - thisIterStepSize * regParam) * w - thisIterStepSize * gradient
val thisIterStepSize = stepSize / math.sqrt(iter)
val brzWeights: BV[Double] = weightsOld.toBreeze.toDenseVector
brzWeights :*= (1.0 - thisIterStepSize * regParam)
brzAxpy(-thisIterStepSize, gradient.toBreeze, brzWeights)
val norm = brzNorm(brzWeights, 2.0)
(Vectors.fromBreeze(brzWeights), 0.5 * regParam * norm * norm)
}
}