当前位置: 首页 > 工具软件 > Faust > 使用案例 >

python流处理框架_Faust——python分布式流式处理框架

南门嘉
2023-12-01

摘要

Faust是用python开发的一个分布式流式处理框架。在一个机器学习应用中,机器学习算法可能被用于数据流实时处理的各个环节,而不是仅仅在推理阶段,算法也不仅仅局限于常见的分类回归算法,而是会根据业务需要执行一个十分差异化的任务, 例如:在我们的时序异常检测应用中, 前处理阶段的变点检测算法。这就要求流处理框架除了具备进行常规的转换聚合操作之外,可以支持更加强大的任意自定义逻辑和更加复杂的自定义状态,能够更好地与原生的python算法代码紧密结合在一起。在主流的flink, spark streaming不能满足我们的个性化需求时, Faust为我们提供了一个选择.

本文将对faust框架的主要功能进行概要描述。

参考连接

https://faust.readthedocs.io/en/latest/

https://github.com/robinhood/faust

基本使用

app

faust库的一个实例,提供了Faust的核心API,通过app可定义kafka topic、流处理器等。

>>> app = faust.App(

... 'myid',

... broker='kafka://kafka.example.com',

... store='rocksdb://',

... )

创建topic

faust以kafka作为数据传输和自组织管理的媒介,可以直接在faust应用中定义kafka主题。

topic = app.topic('name_of_topic')

@app.agent(topic)

async def process(stream):

async for event in stream:

...

创建table

table是Faust中的分布式键值对数据表,可用于保存流处理过程中的中间状态。

transfer_counts = app.Table(

'transfer_counts',

default=int,

key_type=str,

value_type=int,

)

创建agent

agent是数据处理流中的一个基本处理单元,通过从kafka中摄取指定topic中的数据,并进行相应的处理。

import faust

app = faust.App('stream-example')

@app.agent()

async def myagent(stream):

"""Example agent."""

async for value in stream:

print(f'MYAGENT RECEIVED -- {value!r}')

yield value

if __name__ == '__main__':

app.main()

agent——分布式自组织流处理器

import faust

class Add(faust.Record):

a: int

b: int

app = faust.App('agent-example')

topic = app.topic('adding', value_type=Add)

@app.agent(topic)

async def adding(stream):

async for value in stream:

yield value.a + value.b

命令行中执行:faust -A examples.agent worker -l info,即可运行这个app。

sinks

可定义事件处理后的额外操作,比如推送告警等。一个sink可以是一个callable、异步callable、另外一个主题、另外一个agent等等。

回调函数

def mysink(value):

print(f'AGENT YIELD: {value!r}')

@app.agent(sink=[mysink])

async def myagent(stream):

async for value in stream:

yield process_value(value)

异步回调

async def mysink(value):

print(f'AGENT YIELD: {value!r}')

await asyncio.sleep(1)

@app.agent(sink=[mysink])

async def myagent(stream):

...

另外一个topic

agent_log_topic = app.topic('agent_log')

@app.agent(sink=[agent_log_topic])

async def myagent(stream):

...

另外一个agent

@app.agent()

async def agent_b(stream):

async for event in stream:

print(f'AGENT B RECEIVED: {event!r}')

@app.agent(sink=[agent_b])

async def agent_a(stream):

async for event in stream:

print(f'AGENT A RECEIVED: {event!r}')

streams

basics

stream是一个无限的异步可迭代对象,从topic中消费数据。

stream的常规使用为:

@app.agent(my_topic)

async def process(stream):

async for value in stream:

...

也可以自己创建一个stream:

stream = app.stream(my_topic) # or: my_topic.stream()

async for value in stream:

...

但是要处理自定义数据流,需要首先定义一个任务,在app启动时执行这个任务。一个完整的例子:

import faust

class Withdrawal(faust.Record):

account: str

amount: float

app = faust.App('example-app')

withdrawals_topic = app.topic('withdrawals', value_type=Withdrawal)

@app.task

async def mytask():

async for w in withdrawals_topic.stream():

print(w.amount)

if __name__ == '__main__':

app.main()

processors

一个stream可以有任意多个处理器回调。

def add_default_language(value: MyModel) -> MyModel:

if not value.language:

value.language = 'US'

return value

async def add_client_info(value: MyModel) -> MyModel:

value.client = await get_http_client_info(value.account_id)

return value

s = app.stream(my_topic,

processors=[add_default_language, add_client_info])

kafka主题

每个faustworker会启动一个kafka consumer消费数据。如果两个agent消费了相同的主题,那么两个agent会分别受到相同的消息,每次消息被回执,那么引用级数-1,当引用计数为0时,consumer就可以提交偏移量了。

操作

groupby

对流进行重新分区。新的流会使用一个新的中间主题,并以相应的字段作为键,这个新的流是agent最终迭代的流。

import faust

class Order(faust.Record):

account_id: str

product_id: str

amount: float

price: float

app = faust.App('group-by-example')

orders_topic = app.topic('orders', value_type=Order)

@app.agent(orders_topic)

async def process(orders):

async for order in orders.group_by(Order.account_id):

...

流分区的关键字不仅可以是数据中的字段,也可以是一个callable。

def get_order_account_id(order):

return json.loads(order)['account_id']

@app.agent(app.topic('order'))

async def process(orders):

async for order in orders.group_by(get_order_account_id):

...

take

缓存数据。

@app.agent()

async def process(stream):

async for values in stream.take(100):

assert len(values) == 100

print(f'RECEIVED 100 VALUES: {values}')

through

将流推送到一个新的topic,并迭代新的topic里的数据.

source_topic = app.topic('source-topic')

destination_topic = app.topic('destination-topic')

@app.agent()

async def process(stream):

async for value in stream.through(destination_topic):

# we are now iterating over stream(destination_topic)

print(value)

filter

过滤操作.

@app.agent()

async def process(stream):

async for value in stream.filter(lambda: v > 1000).group_by(...):

...

Channels & Topics--数据源

basics

agents迭代streams, streams迭代channels.

Models, Serialization, and Codecs

model

model用来描述数据结构, 例如:

class Point(Record, serializer='json'):

x: int

y: int

匿名agent

匿名agent不显示地使用一个topic,而是自己创建topic,在定义好消息类型后,只需直接向该agent发送相应地消息即可.

@app.agent(key_type=Point, value_type=Point)

async def my_agent(events):

async for event in events:

print(event)

await my_agent.send(key=Point(x=10, y=20), value=Point(x=30, y=10))

schema

定义键值的类型和序列化反序列化器

schema = faust.Schema(

key_type=Point,

value_type=Point,

key_serializer='json',

value_serializer='json',

)

topic = app.topic('mytopic', schema=schema)

collections

model中的一个field可以是一个其他类型数据的列表.

from typing import List

import faust

class User(faust.Record):

accounts: List[Account]

支持的其他类型为: set, mapping, tuple.

tables和windowing

tables

table是Faust中的分布式内存数据表,使用kafka的changelog topic作为后端进行持久化和容错.

table = app.Table('totals', default=int)

table的修改只能在流操作只能进行, 否则会报错.

Co-partitioning Tables and Streams

table的任何键的数据只能存在于一台主机上.有状态的流处理要求table和stream协同分区,即同一台主机处理的流和table必须共享相同的分区.因此在操作table的流迭代中需要对流重新分区.

withdrawals_topic = app.topic('withdrawals', value_type=Withdrawal)

country_to_total = app.Table(

'country_to_total', default=int).tumbling(10.0, expires=10.0)

withdrawals_stream = app.topic('withdrawals', value_type=Withdrawal).stream()

withdrawals_by_country = withdrawals_stream.group_by(Withdrawal.country)

@app.agent

async def process_withdrawal(withdrawals):

async for withdrawal in withdrawals.group_by(Withdrawal.country):

country_to_total[withdrawal.country] += withdrawal.amount

如果要进行的计算分别以两个不太的字段分组,则应使用两个不同的agent, 分别groupby.

withdrawals_topic = app.topic('withdrawals', value_type=Withdrawal)

user_to_total = app.Table('user_to_total', default=int)

country_to_total = app.Table(

'country_to_total', default=int).tumbling(10.0, expires=10.0)

@app.agent(withdrawals_topic)

async def find_large_user_withdrawals(withdrawals):

async for withdrawal in withdrawals:

user_to_total[withdrawal.user] += withdrawal.amount

@app.agent(withdrawals_topic)

async def find_large_country_withdrawals(withdrawals):

async for withdrawal in withdrawals.group_by(Withdrawal.country):

country_to_total[withdrawal.country] += withdrawal.amount

windowing

window的定义

from datetime import timedelta

views = app.Table('views', default=int).tumbling(

timedelta(minutes=1),

expires=timedelta(hours=1),

)

可以定义window使用的时间,包括系统时间relativ_to_now(), 当前流的处理时间relative_to_current(),相对数据中的时间字段relative_to_field().

views = app.Table('views', default=int).tumbling(...).relative_to_stream()

事件乱序

windowed table可以正确处理乱序, 只要迟到的数据在table的过期时间内.

 类似资料: