目录
R语言生存分析Log-rank假设检验组间生存曲线比较实战
#log-rank检验
主要内容:安装包,示例,应用Surv()和survfit()函数生存分析涉及预测特定事件发生的时间。 它也被称为失败时间分析或分析死亡时间。 例如预测癌症患者的生存天数或预测机械系统出现故障的时间。 R中的软件包:用于进行生存分析。该包中含有函数,它将输入数据作为R公式,并在所选变量中创建一个生存对象进行分析。然后使用函数来创建分析图。 安装包 语法 在R中创建生存分析的基本语法是 - 以下是使用的参数的描述 - time - 是直到事件发生的后续时间。 ev
本文向大家介绍详解R语言中生存分析模型与时间依赖性ROC曲线可视化,包括了详解R语言中生存分析模型与时间依赖性ROC曲线可视化的使用技巧和注意事项,需要的朋友参考一下 R语言简介 R是用于统计分析、绘图的语言和操作环境。R是属于GNU系统的一个自由、免费、源代码开放的软件,它是一个用于统计计算和统计制图的优秀工具。 人们通常使用接收者操作特征曲线(ROC)进行二元结果逻辑回归。但是,流行病学研究中
主要内容:语法,示例,不同的时间间隔,多时间系列时间序列是一系列数据点,其每个数据点与时间戳相关联。 一个简单的例子就是股票在某一天不同时间点的股票价格。另一个例子是一年中不同月份某个地区的降雨量。R语言使用许多功能来创建,操纵和绘制时间序列数据。时间序列的数据存储在称为时间序列对象的R对象中。 它也是一个R数据对象,如向量或数据帧。 时间序列对象是通过使用函数创建的。 语法 时间序列分析所使用的函数的基本语法是 - 以下是使用的参数的描述 -
主要内容:语法,示例卡方检验是一种统计方法,用于确定两个分类变量之间是否具有显着的相关性。 这些变量应该来自相同的人口,它们应该是分类的,如 - 是/否,男/女,红/绿等。 例如,我们可以建立一个数据集,观察人们的冰淇淋购买模式,并尝试将一个人的性别与他们喜欢的冰淇淋的味道相关联。 如果发现相关性,我们可以通过了解访问者的性别数量来调整对应口味的库存。 语法 执行卡方检验的函数是:。 在R中创建卡方检验的基本语法是
生存分析涉及预测特定事件将要发生的时间。 它也被称为失效时间分析或死亡时间分析。 例如,预测患有癌症的人将存活的天数或预测机械系统将要失败的时间。 名为survival的R包用于进行生存分析。 该软件包包含函数Surv() ,它将输入数据作为R公式,并在所选变量中创建一个生存对象进行分析。 然后我们使用函数survfit()来创建分析图。 安装包 install.packages("surviva
./redis-cli --bigkeys 对redis中的key进行采样,寻找较大的keys。是用的是scan方式,不用担心会阻塞redis很长时间不能处理其他的请求。执行的结果可以用于分析redis的内存的只用状态,每种类型key的平均大小。
主要内容:ANCOVA分析,比较两个模型我们使用回归分析来创建描述预测变量变量对响应变量的影响的模型。有时,如果我们有类似于是/否或男/女等值的分类变量,简单回归分析为分类变量的每个值提供多个结果。在这种情况下,可以通过使用分类变量和预测变量来研究分类变量的影响,并比较分类变量的每个级别的回归线。 这样的分析被称为协方差分析,也称为ANCOVA。 输入数据 从R提供的数据集创建一个包含字段,和的数据框。 这里我们将作为响应变量,将作为预
我希望TPP是一个数组,每个阈值都有TPP值。打印应该是这样的:TPP是:n1,n2。。。