(一些资料收集,好像还是个广告软文,我把广告去掉了...)
一、ARM微处理器核心以及体系结构的发展历史:
比较熟悉的三星的S3C2410芯片是ARMv4架构,ATMEL公司的AT91SAM9261芯片则是ARMv5架构。
款式M包含的处理器有Cortex-M0、Cortex-M1、Cortex-M3、Cortex-M4以及Cortex-M7,以上处理器常被用于低成本、低功耗、高可靠的嵌入式实时系统中。它们既可以用于“裸片”开发又能运行实时操作系统,比如ucos、VxWorks以及freeRTOS等。
款式A:高性能的处理器级平台,性能比肩计算机。
款式R:定位应用于高端嵌入式系统,高可靠及高时效性。
款式M:用于深度嵌入、定制的嵌入式系统。
值得注意的是,Cortex-M下的处理器没有内存管理单元MMU。
二、MMU
内存管理单元简称MMU,它负责虚拟地址到物理地址的映射,并提供硬件机制的内存访问权限检查。在多用户、多进程的操作系统中,MMU使得各个用户进程都有独立的地址空间。
任何微控制器都存在一个程序能够产生的地址集和,被称为虚拟地址范围。以32位机为例,虚拟地址范围为0~0xFFFFFFFF(4G)。当该控制器寻址一个256M的内存时,它的可用地址范围被限定为0x00000000~0x0FFFFFFF(256M)。在没有MMU的控制器中,虚拟地址被直接发送到内存总线上,以读写该地址下的物理存储器。在拥有MMU的控制器中,虚拟地址首先被发送到MMU中,被映射为物理地址后再发送到内存总线上。
注:上图仅简单反映内存管理的映射机制,权限映射、TLB快表、页表等概念不做深入讨论。
虚拟内存管理最主要的作用是让每个进程有独立的地址空间。不同进程中的同一个虚拟地址被MMU映射到不同的物理地址,并且在某一个进程中访问任何地址都不可能访问到另外一个进程的数据,这样使得任何一个进程由于执行错误指令或恶意代码导致的非法内存访问都不会意外改写其它进程的数据,不会影响其它进程的运行,从而保证整个系统的稳定性。另一方面,每个进程都认为自己独占整个虚拟地址空间,这样链接器和加载器的实现会比较容易,不必考虑各进程的地址范围是否冲突。
MMU,存储器管理单元,用于实现虚拟内存和内存的分区保护,这是应用处理器与嵌入式处理器的分水岭。电脑和数码产品所使用的处理器几乎清一色地都带MMU。但是MMU也引入了不确定性,这有时是嵌入式领域————尤其是实时系统不可接受的。然而对于安全关键(safety-critical)的嵌入式系统,还是不能没有内存的分区保护的。为解决矛盾,就有了MPU。可以把MPU认为是MMU的功能子集,它只支持分区保护,不支持具有“定位决定性”的虚拟内存机制。 ————《Cortex-M3权威指南》
三、操作系统
一般将操作系统分为实时操作系统和非实时操作系统。实时操作系统大多为单进程、多线程(多任务),因此不涉及到线程间的地址空间分配,不需要使用MMU,例如VxWorks。Linux系统属于非实时性操作体统,多进程是其主要特点。
Linux系统对内存管理单元有极强的依赖,若在没有MMU的处理器中运行Linux,恐怕整个系统只能停留在Uboot阶段了。由于Cortex-m处理器没有内存管理单元,因此跑不了Linux系统。任何事情都不是绝对的,如果你重写了Linux内核且搭配足够大的内存芯片,从理论上来说是可以省掉MMU的。但是,这样的工作量,真的值得吗?实际上,MMU就是为了解决操作系统越来越复杂的内存管理而产生的。