当前位置: 首页 > 工具软件 > mpmath > 使用案例 >

python boxcox1p_Python mpmath.mpf方法代码示例

屈健柏
2023-12-01

本文整理汇总了Python中mpmath.mpf方法的典型用法代码示例。如果您正苦于以下问题:Python mpmath.mpf方法的具体用法?Python mpmath.mpf怎么用?Python mpmath.mpf使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在模块mpmath的用法示例。

在下文中一共展示了mpmath.mpf方法的24个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: compute_d

​点赞 6

# 需要导入模块: import mpmath [as 别名]

# 或者: from mpmath import mpf [as 别名]

def compute_d(K, N):

"""d_{k, n} from DLMF 8.12.12"""

M = N + 2*K

d0 = [-mp.mpf(1)/3]

alpha = compute_alpha(M + 2)

for n in range(1, M):

d0.append((n + 2)*alpha[n+2])

d = [d0]

g = compute_g(K)

for k in range(1, K):

dk = []

for n in range(M - 2*k):

dk.append((-1)**k*g[k]*d[0][n] + (n + 2)*d[k-1][n+2])

d.append(dk)

for k in range(K):

d[k] = d[k][:N]

return d

开发者ID:ryfeus,项目名称:lambda-packs,代码行数:19,

示例2: gammainc

​点赞 6

# 需要导入模块: import mpmath [as 别名]

# 或者: from mpmath import mpf [as 别名]

def gammainc(a, x, dps=50, maxterms=10**8):

"""Compute gammainc exactly like mpmath does but allow for more

summands in hypercomb. See

mpmath/functions/expintegrals.py#L134

in the mpmath github repository.

"""

with mp.workdps(dps):

z, a, b = mp.mpf(a), mp.mpf(x), mp.mpf(x)

G = [z]

negb = mp.fneg(b, exact=True)

def h(z):

T1 = [mp.exp(negb), b, z], [1, z, -1], [], G, [1], [1+z], b

return (T1,)

res = mp.hypercomb(h, [z], maxterms=maxterms)

return mpf2float(res)

开发者ID:ryfeus,项目名称:lambda-packs,代码行数:22,

示例3: zpkfreqz

​点赞 6

# 需要导入模块: import mpmath [as 别名]

# 或者: from mpmath import mpf [as 别名]

def zpkfreqz(z, p, k, worN=None):

"""

Frequency response of a filter in zpk format, using mpmath.

This is the same calculation as scipy.signal.freqz, but the input is in

zpk format, the calculation is performed using mpath, and the results are

returned in lists instead of numpy arrays.

"""

if worN is None or isinstance(worN, int):

N = worN or 512

ws = [mpmath.pi * mpmath.mpf(j) / N for j in range(N)]

else:

ws = worN

h = []

for wk in ws:

zm1 = mpmath.exp(1j * wk)

numer = _prod([zm1 - t for t in z])

denom = _prod([zm1 - t for t in p])

hk = k * numer / denom

h.append(hk)

return ws, h

开发者ID:Relph1119,项目名称:GraphicDesignPatternByPython,代码行数:24,

示例4: test_rf

​点赞 6

# 需要导入模块: import mpmath [as 别名]

# 或者: from mpmath import mpf [as 别名]

def test_rf(self):

if LooseVersion(mpmath.__version__) >= LooseVersion("1.0.0"):

# no workarounds needed

mppoch = mpmath.rf

else:

def mppoch(a, m):

# deal with cases where the result in double precision

# hits exactly a non-positive integer, but the

# corresponding extended-precision mpf floats don't

if float(a + m) == int(a + m) and float(a + m) <= 0:

a = mpmath.mpf(a)

m = int(a + m) - a

return mpmath.rf(a, m)

assert_mpmath_equal(sc.poch,

mppoch,

[Arg(), Arg()],

dps=400)

开发者ID:Relph1119,项目名称:GraphicDesignPatternByPython,代码行数:20,

示例5: test_boxcox

​点赞 6

# 需要导入模块: import mpmath [as 别名]

# 或者: from mpmath import mpf [as 别名]

def test_boxcox(self):

def mp_boxcox(x, lmbda):

x = mpmath.mp.mpf(x)

lmbda = mpmath.mp.mpf(lmbda)

if lmbda == 0:

return mpmath.mp.log(x)

else:

return mpmath.mp.powm1(x, lmbda) / lmbda

assert_mpmath_equal(sc.boxcox,

exception_to_nan(mp_boxcox),

[Arg(a=0, inclusive_a=False), Arg()],

n=200,

dps=60,

rtol=1e-13)

开发者ID:Relph1119,项目名称:GraphicDesignPatternByPython,代码行数:18,

示例6: test_boxcox1p

​点赞 6

# 需要导入模块: import mpmath [as 别名]

# 或者: from mpmath import mpf [as 别名]

def test_boxcox1p(self):

def mp_boxcox1p(x, lmbda):

x = mpmath.mp.mpf(x)

lmbda = mpmath.mp.mpf(lmbda)

one = mpmath.mp.mpf(1)

if lmbda == 0:

return mpmath.mp.log(one + x)

else:

return mpmath.mp.powm1(one + x, lmbda) / lmbda

assert_mpmath_equal(sc.boxcox1p,

exception_to_nan(mp_boxcox1p),

[Arg(a=-1, inclusive_a=False), Arg()],

n=200,

dps=60,

rtol=1e-13)

开发者ID:Relph1119,项目名称:GraphicDesignPatternByPython,代码行数:19,

示例7: mpf2float

​点赞 5

# 需要导入模块: import mpmath [as 别名]

# 或者: from mpmath import mpf [as 别名]

def mpf2float(x):

"""

Convert an mpf to the nearest floating point number. Just using

float directly doesn't work because of results like this:

with mp.workdps(50):

float(mpf("0.99999999999999999")) = 0.9999999999999999

"""

return float(mpmath.nstr(x, 17, min_fixed=0, max_fixed=0))

开发者ID:ryfeus,项目名称:lambda-packs,代码行数:12,

示例8: mp_assert_allclose

​点赞 5

# 需要导入模块: import mpmath [as 别名]

# 或者: from mpmath import mpf [as 别名]

def mp_assert_allclose(res, std, atol=0, rtol=1e-17):

"""

Compare lists of mpmath.mpf's or mpmath.mpc's directly so that it

can be done to higher precision than double.

"""

try:

len(res)

except TypeError:

res = list(res)

n = len(std)

if len(res) != n:

raise AssertionError("Lengths of inputs not equal.")

failures = []

for k in range(n):

try:

assert_(mpmath.fabs(res[k] - std[k]) <= atol + rtol*mpmath.fabs(std[k]))

except AssertionError:

failures.append(k)

ndigits = int(abs(np.log10(rtol)))

msg = [""]

msg.append("Bad results ({} out of {}) for the following points:"

.format(len(failures), n))

for k in failures:

resrep = mpmath.nstr(res[k], ndigits, min_fixed=0, max_fixed=0)

stdrep = mpmath.nstr(std[k], ndigits, min_fixed=0, max_fixed=0)

if std[k] == 0:

rdiff = "inf"

else:

rdiff = mpmath.fabs((res[k] - std[k])/std[k])

rdiff = mpmath.nstr(rdiff, 3)

msg.append("{}: {} != {} (rdiff {})".format(k, resrep, stdrep, rdiff))

if failures:

assert_(False, "\n".join(msg))

开发者ID:ryfeus,项目名称:lambda-packs,代码行数:39,

示例9: compute_a

​点赞 5

# 需要导入模块: import mpmath [as 别名]

# 或者: from mpmath import mpf [as 别名]

def compute_a(n):

"""a_k from DLMF 5.11.6"""

a = [mp.sqrt(2)/2]

for k in range(1, n):

ak = a[-1]/k

for j in range(1, len(a)):

ak -= a[j]*a[-j]/(j + 1)

ak /= a[0]*(1 + mp.mpf(1)/(k + 1))

a.append(ak)

return a

开发者ID:ryfeus,项目名称:lambda-packs,代码行数:12,

示例10: lagrange_inversion

​点赞 5

# 需要导入模块: import mpmath [as 别名]

# 或者: from mpmath import mpf [as 别名]

def lagrange_inversion(a):

"""Given a series

f(x) = a[1]*x + a[2]*x**2 + ... + a[n-1]*x**(n - 1),

use the Lagrange inversion formula to compute a series

g(x) = b[1]*x + b[2]*x**2 + ... + b[n-1]*x**(n - 1)

so that f(g(x)) = g(f(x)) = x mod x**n. We must have a[0] = 0, so

necessarily b[0] = 0 too.

The algorithm is naive and could be improved, but speed isn't an

issue here and it's easy to read.

"""

n = len(a)

f = sum(a[i]*x**i for i in range(len(a)))

h = (x/f).series(x, 0, n).removeO()

hpower = [h**0]

for k in range(n):

hpower.append((hpower[-1]*h).expand())

b = [mp.mpf(0)]

for k in range(1, n):

b.append(hpower[k].coeff(x, k - 1)/k)

b = map(lambda x: mp.mpf(x), b)

return b

开发者ID:Relph1119,项目名称:GraphicDesignPatternByPython,代码行数:29,

示例11: _binomial_cdf

​点赞 5

# 需要导入模块: import mpmath [as 别名]

# 或者: from mpmath import mpf [as 别名]

def _binomial_cdf(k, n, p):

k, n, p = mpmath.mpf(k), mpmath.mpf(n), mpmath.mpf(p)

if k <= 0:

return mpmath.mpf(0)

elif k >= n:

return mpmath.mpf(1)

onemp = mpmath.fsub(1, p, exact=True)

return mpmath.betainc(n - k, k + 1, x2=onemp, regularized=True)

开发者ID:Relph1119,项目名称:GraphicDesignPatternByPython,代码行数:11,

示例12: _f_cdf

​点赞 5

# 需要导入模块: import mpmath [as 别名]

# 或者: from mpmath import mpf [as 别名]

def _f_cdf(dfn, dfd, x):

if x < 0:

return mpmath.mpf(0)

dfn, dfd, x = mpmath.mpf(dfn), mpmath.mpf(dfd), mpmath.mpf(x)

ub = dfn*x/(dfn*x + dfd)

res = mpmath.betainc(dfn/2, dfd/2, x2=ub, regularized=True)

return res

开发者ID:Relph1119,项目名称:GraphicDesignPatternByPython,代码行数:9,

示例13: _noncentral_chi_cdf

​点赞 5

# 需要导入模块: import mpmath [as 别名]

# 或者: from mpmath import mpf [as 别名]

def _noncentral_chi_cdf(x, df, nc, dps=None):

if dps is None:

dps = mpmath.mp.dps

x, df, nc = mpmath.mpf(x), mpmath.mpf(df), mpmath.mpf(nc)

with mpmath.workdps(dps):

res = mpmath.quad(lambda t: _noncentral_chi_pdf(t, df, nc), [0, x])

return res

开发者ID:Relph1119,项目名称:GraphicDesignPatternByPython,代码行数:9,

示例14: test_tklmbda_zero_shape

​点赞 5

# 需要导入模块: import mpmath [as 别名]

# 或者: from mpmath import mpf [as 别名]

def test_tklmbda_zero_shape(self):

# When lmbda = 0 the CDF has a simple closed form

one = mpmath.mpf(1)

assert_mpmath_equal(

lambda x: sp.tklmbda(x, 0),

lambda x: one/(mpmath.exp(-x) + one),

[Arg()], rtol=1e-7)

开发者ID:Relph1119,项目名称:GraphicDesignPatternByPython,代码行数:9,

示例15: test_g

​点赞 5

# 需要导入模块: import mpmath [as 别名]

# 或者: from mpmath import mpf [as 别名]

def test_g():

# Test data for the g_k. See DLMF 5.11.4.

with mp.workdps(30):

g = [mp.mpf(1), mp.mpf(1)/12, mp.mpf(1)/288,

-mp.mpf(139)/51840, -mp.mpf(571)/2488320,

mp.mpf(163879)/209018880, mp.mpf(5246819)/75246796800]

mp_assert_allclose(compute_g(7), g)

开发者ID:Relph1119,项目名称:GraphicDesignPatternByPython,代码行数:9,

示例16: test_alpha

​点赞 5

# 需要导入模块: import mpmath [as 别名]

# 或者: from mpmath import mpf [as 别名]

def test_alpha():

# Test data for the alpha_k. See DLMF 8.12.14.

with mp.workdps(30):

alpha = [mp.mpf(0), mp.mpf(1), mp.mpf(1)/3, mp.mpf(1)/36,

-mp.mpf(1)/270, mp.mpf(1)/4320, mp.mpf(1)/17010,

-mp.mpf(139)/5443200, mp.mpf(1)/204120]

mp_assert_allclose(compute_alpha(9), alpha)

开发者ID:Relph1119,项目名称:GraphicDesignPatternByPython,代码行数:9,

示例17: test_d

​点赞 5

# 需要导入模块: import mpmath [as 别名]

# 或者: from mpmath import mpf [as 别名]

def test_d():

# Compare the d_{k, n} to the results in appendix F of [1].

#

# Sources

# -------

# [1] DiDonato and Morris, Computation of the Incomplete Gamma

# Function Ratios and their Inverse, ACM Transactions on

# Mathematical Software, 1986.

with mp.workdps(50):

dataset = [(0, 0, -mp.mpf('0.333333333333333333333333333333')),

(0, 12, mp.mpf('0.102618097842403080425739573227e-7')),

(1, 0, -mp.mpf('0.185185185185185185185185185185e-2')),

(1, 12, mp.mpf('0.119516285997781473243076536700e-7')),

(2, 0, mp.mpf('0.413359788359788359788359788360e-2')),

(2, 12, -mp.mpf('0.140925299108675210532930244154e-7')),

(3, 0, mp.mpf('0.649434156378600823045267489712e-3')),

(3, 12, -mp.mpf('0.191111684859736540606728140873e-7')),

(4, 0, -mp.mpf('0.861888290916711698604702719929e-3')),

(4, 12, mp.mpf('0.288658297427087836297341274604e-7')),

(5, 0, -mp.mpf('0.336798553366358150308767592718e-3')),

(5, 12, mp.mpf('0.482409670378941807563762631739e-7')),

(6, 0, mp.mpf('0.531307936463992223165748542978e-3')),

(6, 12, -mp.mpf('0.882860074633048352505085243179e-7')),

(7, 0, mp.mpf('0.344367606892377671254279625109e-3')),

(7, 12, -mp.mpf('0.175629733590604619378669693914e-6')),

(8, 0, -mp.mpf('0.652623918595309418922034919727e-3')),

(8, 12, mp.mpf('0.377358774161109793380344937299e-6')),

(9, 0, -mp.mpf('0.596761290192746250124390067179e-3')),

(9, 12, mp.mpf('0.870823417786464116761231237189e-6'))]

d = compute_d(10, 13)

res = []

for k, n, std in dataset:

res.append(d[k][n])

std = map(lambda x: x[2], dataset)

mp_assert_allclose(res, std)

开发者ID:Relph1119,项目名称:GraphicDesignPatternByPython,代码行数:38,

示例18: test_spherical_jn

​点赞 5

# 需要导入模块: import mpmath [as 别名]

# 或者: from mpmath import mpf [as 别名]

def test_spherical_jn(self):

def mp_spherical_jn(n, z):

arg = mpmath.mpmathify(z)

out = (mpmath.besselj(n + mpmath.mpf(1)/2, arg) /

mpmath.sqrt(2*arg/mpmath.pi))

if arg.imag == 0:

return out.real

else:

return out

assert_mpmath_equal(lambda n, z: sc.spherical_jn(int(n), z),

exception_to_nan(mp_spherical_jn),

[IntArg(0, 200), Arg(-1e8, 1e8)],

dps=300)

开发者ID:Relph1119,项目名称:GraphicDesignPatternByPython,代码行数:16,

示例19: test_spherical_yn

​点赞 5

# 需要导入模块: import mpmath [as 别名]

# 或者: from mpmath import mpf [as 别名]

def test_spherical_yn(self):

def mp_spherical_yn(n, z):

arg = mpmath.mpmathify(z)

out = (mpmath.bessely(n + mpmath.mpf(1)/2, arg) /

mpmath.sqrt(2*arg/mpmath.pi))

if arg.imag == 0:

return out.real

else:

return out

assert_mpmath_equal(lambda n, z: sc.spherical_yn(int(n), z),

exception_to_nan(mp_spherical_yn),

[IntArg(0, 200), Arg(-1e10, 1e10)],

dps=100)

开发者ID:Relph1119,项目名称:GraphicDesignPatternByPython,代码行数:16,

示例20: test_spherical_yn_complex

​点赞 5

# 需要导入模块: import mpmath [as 别名]

# 或者: from mpmath import mpf [as 别名]

def test_spherical_yn_complex(self):

def mp_spherical_yn(n, z):

arg = mpmath.mpmathify(z)

out = (mpmath.bessely(n + mpmath.mpf(1)/2, arg) /

mpmath.sqrt(2*arg/mpmath.pi))

if arg.imag == 0:

return out.real

else:

return out

assert_mpmath_equal(lambda n, z: sc.spherical_yn(int(n.real), z),

exception_to_nan(mp_spherical_yn),

[IntArg(0, 200), ComplexArg()])

开发者ID:Relph1119,项目名称:GraphicDesignPatternByPython,代码行数:15,

示例21: test_spherical_in

​点赞 5

# 需要导入模块: import mpmath [as 别名]

# 或者: from mpmath import mpf [as 别名]

def test_spherical_in(self):

def mp_spherical_in(n, z):

arg = mpmath.mpmathify(z)

out = (mpmath.besseli(n + mpmath.mpf(1)/2, arg) /

mpmath.sqrt(2*arg/mpmath.pi))

if arg.imag == 0:

return out.real

else:

return out

assert_mpmath_equal(lambda n, z: sc.spherical_in(int(n), z),

exception_to_nan(mp_spherical_in),

[IntArg(0, 200), Arg()],

dps=200, atol=10**(-278))

开发者ID:Relph1119,项目名称:GraphicDesignPatternByPython,代码行数:16,

示例22: test_spherical_in_complex

​点赞 5

# 需要导入模块: import mpmath [as 别名]

# 或者: from mpmath import mpf [as 别名]

def test_spherical_in_complex(self):

def mp_spherical_in(n, z):

arg = mpmath.mpmathify(z)

out = (mpmath.besseli(n + mpmath.mpf(1)/2, arg) /

mpmath.sqrt(2*arg/mpmath.pi))

if arg.imag == 0:

return out.real

else:

return out

assert_mpmath_equal(lambda n, z: sc.spherical_in(int(n.real), z),

exception_to_nan(mp_spherical_in),

[IntArg(0, 200), ComplexArg()])

开发者ID:Relph1119,项目名称:GraphicDesignPatternByPython,代码行数:15,

示例23: test_spherical_kn

​点赞 5

# 需要导入模块: import mpmath [as 别名]

# 或者: from mpmath import mpf [as 别名]

def test_spherical_kn(self):

def mp_spherical_kn(n, z):

out = (mpmath.besselk(n + mpmath.mpf(1)/2, z) *

mpmath.sqrt(mpmath.pi/(2*mpmath.mpmathify(z))))

if mpmath.mpmathify(z).imag == 0:

return out.real

else:

return out

assert_mpmath_equal(lambda n, z: sc.spherical_kn(int(n), z),

exception_to_nan(mp_spherical_kn),

[IntArg(0, 150), Arg()],

dps=100)

开发者ID:Relph1119,项目名称:GraphicDesignPatternByPython,代码行数:15,

示例24: pdf_gauss_mp

​点赞 5

# 需要导入模块: import mpmath [as 别名]

# 或者: from mpmath import mpf [as 别名]

def pdf_gauss_mp(x, sigma, mean):

return mp.mpf(1.) / mp.sqrt(mp.mpf("2.") * sigma ** 2 * mp.pi) * mp.exp(

- (x - mean) ** 2 / (mp.mpf("2.") * sigma ** 2))

开发者ID:SAP-samples,项目名称:machine-learning-diff-private-federated-learning,代码行数:5,

注:本文中的mpmath.mpf方法示例整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。

 类似资料: