目前(2020.03)知识图谱嵌入研究方法众多,本文将对其中的主流方法进行简要介绍,如翻译、双线性、神经网络、双曲几何、旋转等。各方法细节请看原论文,文中错误欢迎指出,谢谢。
知识图谱嵌入(Knowledge Graph Embedding, KGE)学习知识库中的实体和关系的Embedding表示,是语义检索、知识问答、推荐等众多应⽤的基础研究。在具体了解KGE之前,我们先来看知识图谱是什么,为什么又要做知识图谱嵌入呢。
如下图所示,知识图谱是由大量的事实三元组组成,如(英国, 首都, 伦敦)便是真实世界中的知识,可用 (h, r, t) 进行表示,其中 h, t 表示头尾实体, r 表示关系。但我们知道,真实世界中知识是无限增长的,而知识图谱却不能包含真实世界中的所有知识,因此需在知识库中进行知识补全,或者称为链接预测。
如何进行链接预测呢?一个可行的方法便是将实体和关系进行Embedding表示,类似于Word2Vec,将字或词表示成Embedding信息。然后根据实体和关系的Embedding信息进行预测,比如利用头实体和关系去预测尾实体,或者利用尾实体和关系去预测头实体。当然,Embedding信息也可应用到其他领域,比如知识问答、文本信息增强、语义检索等。