Sphere/.IN/.OUT/.PAS/.EXE
【题意】
给出求在n维坐标系中,到n+1个点距离都相同的点
输入
输入文件第一行为整数N,代表了空间的维度。
接下来N+1 行,每行N 个实数代表一个坐标。输入数据精确到小数点后6 位。
输入数据保证输出结果唯一。
输出
输出一行N 个实数代表球心的坐标,精确到小数点后三位。相邻的数字之间用一个空
格分开(行末无空格)。
由n+1个坐标可得出n个n元一次方程
高斯消元即可
program sphere;
const
eps=1e-7;
type
equation=array [0..11] of extended;
var
n,i,j,k:longint;
x:extended;
temp:equation;
square:array [0..11] of equation;
point,con:array [0..11] of extended;
procedure swap (var a,b:equation);
var
i:equation;
begin
i:=a;
a:=b;
b:=i;
end;
begin
assign(input,'sphere.in');
reset(input);
assign(output,'sphere.out');
rewrite(output);
read(n);
for i:=1 to n do
begin
read(x);
temp[i]:=-2*x;
con[0]:=con[0]-x*x;
end;
for i:=1 to n do
begin
con[i]:=-con[0];
for j:=1 to n do
begin
read(x);
square[i][j]:=-2*x-temp[j];
con[i]:=con[i]-x*x;
end;
end;
for i:=1 to n-1 do
begin
if abs(square[i][i])<eps then
for j:=i+1 to n do
if abs(square[j][i])>eps then
begin
swap(square[i],square[j]);
break;
end;
for j:=i+1 to n do
if abs(square[j][i])>eps then
begin
x:=-square[j][i]/square[i][i];
for k:=i to n do
square[j][k]:=square[j][k]+square[i][k]*x;
con[j]:=con[j]+con[i]*x;
end;
end;
for i:=n downto 1 do
begin
x:=con[i];
for j:=i+1 to n do
x:=x-point[j]*square[i][j];
point[i]:=x/square[i][i];
end;
for i:=1 to n do
begin
write(point[i]:0:3);
if i<>n then write(' ');
end;
close(input);
close(output);
end.