原文地址https://github.com/wangshub/wechat_jump_game/blob/master/wechat_jump_auto.py
# -*- coding: utf-8 -*-
"""
=== 思路 ===
核心:每次落稳之后截图,根据截图算出棋子的坐标和下一个块顶面的中点坐标,
根据两个点的距离乘以一个时间系数获得长按的时间
识别棋子:靠棋子的颜色来识别位置,通过截图发现最下面一行大概是一条
直线,就从上往下一行一行遍历,比较颜色(颜色用了一个区间来比较)
找到最下面的那一行的所有点,然后求个中点,求好之后再让 Y 轴坐标
减小棋子底盘的一半高度从而得到中心点的坐标
识别棋盘:靠底色和方块的色差来做,从分数之下的位置开始,一行一行扫描,
由于圆形的块最顶上是一条线,方形的上面大概是一个点,所以就
用类似识别棋子的做法多识别了几个点求中点,这时候得到了块中点的 X
轴坐标,这时候假设现在棋子在当前块的中心,根据一个通过截图获取的
固定的角度来推出中点的 Y 坐标
最后:根据两点的坐标算距离乘以系数来获取长按时间(似乎可以直接用 X 轴距离)
"""
from __future__ import print_function, division
import os
import sys
import time
import math
import random
from PIL import Image
from six.moves import input
try:
from common import debug, config, screenshot
except Exception as ex:
print(ex)
print('请将脚本放在项目根目录中运行')
print('请检查项目根目录中的 common 文件夹是否存在')
exit(-1)
VERSION = "1.1.1"
# DEBUG 开关,需要调试的时候请改为 True,不需要调试的时候为 False
DEBUG_SWITCH = False
# Magic Number,不设置可能无法正常执行,请根据具体截图从上到下按需
# 设置,设置保存在 config 文件夹中
config = config.open_accordant_config()
under_game_score_y = config['under_game_score_y']
# 长按的时间系数,请自己根据实际情况调节
press_coefficient = config['press_coefficient']
# 二分之一的棋子底座高度,可能要调节
piece_base_height_1_2 = config['piece_base_height_1_2']
# 棋子的宽度,比截图中量到的稍微大一点比较安全,可能要调节
piece_body_width = config['piece_body_width']
def set_button_position(im):
"""
将 swipe 设置为 `再来一局` 按钮的位置
"""
global swipe_x1, swipe_y1, swipe_x2, swipe_y2
w, h = im.size
left = int(w / 2)
top = int(1584 * (h / 1920.0))
left = int(random.uniform(left-50, left+50))
top = int(random.uniform(top-10, top+10)) # 随机防 ban
swipe_x1, swipe_y1, swipe_x2, swipe_y2 = left, top, left, top
def jump(distance):
"""
跳跃一定的距离
"""
press_time = distance * press_coefficient
press_time = max(press_time, 200) # 设置 200ms 是最小的按压时间
press_time = int(press_time)
cmd = 'adb shell input swipe {x1} {y1} {x2} {y2} {duration}'.format(
x1=swipe_x1,
y1=swipe_y1,
x2=swipe_x2,
y2=swipe_y2,
duration=press_time
)
print(cmd)
os.system(cmd)
return press_time
def find_piece_and_board(im):
"""
寻找关键坐标
"""
w, h = im.size
piece_x_sum = 0
piece_x_c = 0
piece_y_max = 0
board_x = 0
board_y = 0
scan_x_border = int(w / 8) # 扫描棋子时的左右边界
scan_start_y = 0 # 扫描的起始 y 坐标
im_pixel = im.load()
# 以 50px 步长,尝试探测 scan_start_y
for i in range(int(h / 3), int(h*2 / 3), 50):
last_pixel = im_pixel[0, i]
for j in range(1, w):
pixel = im_pixel[j, i]
# 不是纯色的线,则记录 scan_start_y 的值,准备跳出循环
if pixel != last_pixel:
scan_start_y = i - 50
break
if scan_start_y:
break
print('scan_start_y: {}'.format(scan_start_y))
# 从 scan_start_y 开始往下扫描,棋子应位于屏幕上半部分,这里暂定不超过 2/3
for i in range(scan_start_y, int(h * 2 / 3)):
# 横坐标方面也减少了一部分扫描开销
for j in range(scan_x_border, w - scan_x_border):
pixel = im_pixel[j, i]
# 根据棋子的最低行的颜色判断,找最后一行那些点的平均值,这个颜
# 色这样应该 OK,暂时不提出来
if (50 < pixel[0] < 60) \
and (53 < pixel[1] < 63) \
and (95 < pixel[2] < 110):
piece_x_sum += j
piece_x_c += 1
piece_y_max = max(i, piece_y_max)
if not all((piece_x_sum, piece_x_c)):
return 0, 0, 0, 0
piece_x = int(piece_x_sum / piece_x_c)
piece_y = piece_y_max - piece_base_height_1_2 # 上移棋子底盘高度的一半
# 限制棋盘扫描的横坐标,避免音符 bug
if piece_x < w/2:
board_x_start = piece_x
board_x_end = w
else:
board_x_start = 0
board_x_end = piece_x
for i in range(int(h / 3), int(h * 2 / 3)):
last_pixel = im_pixel[0, i]
if board_x or board_y:
break
board_x_sum = 0
board_x_c = 0
for j in range(int(board_x_start), int(board_x_end)):
pixel = im_pixel[j, i]
# 修掉脑袋比下一个小格子还高的情况的 bug
if abs(j - piece_x) < piece_body_width:
continue
# 修掉圆顶的时候一条线导致的小 bug,这个颜色判断应该 OK,暂时不提出来
if abs(pixel[0] - last_pixel[0]) \
+ abs(pixel[1] - last_pixel[1]) \
+ abs(pixel[2] - last_pixel[2]) > 10:
board_x_sum += j
board_x_c += 1
if board_x_sum:
board_x = board_x_sum / board_x_c
last_pixel = im_pixel[board_x, i]
# 从上顶点往下 +274 的位置开始向上找颜色与上顶点一样的点,为下顶点
# 该方法对所有纯色平面和部分非纯色平面有效,对高尔夫草坪面、木纹桌面、
# 药瓶和非菱形的碟机(好像是)会判断错误
for k in range(i+274, i, -1): # 274 取开局时最大的方块的上下顶点距离
pixel = im_pixel[board_x, k]
if abs(pixel[0] - last_pixel[0]) \
+ abs(pixel[1] - last_pixel[1]) \
+ abs(pixel[2] - last_pixel[2]) < 10:
break
board_y = int((i+k) / 2)
# 如果上一跳命中中间,则下个目标中心会出现 r245 g245 b245 的点,利用这个
# 属性弥补上一段代码可能存在的判断错误
# 若上一跳由于某种原因没有跳到正中间,而下一跳恰好有无法正确识别花纹,则有
# 可能游戏失败,由于花纹面积通常比较大,失败概率较低
for j in range(i, i+200):
pixel = im_pixel[board_x, j]
if abs(pixel[0] - 245) + abs(pixel[1] - 245) + abs(pixel[2] - 245) == 0:
board_y = j + 10
break
if not all((board_x, board_y)):
return 0, 0, 0, 0
return piece_x, piece_y, board_x, board_y
def yes_or_no(prompt, true_value='y', false_value='n', default=True):
"""
检查是否已经为启动程序做好了准备
"""
default_value = true_value if default else false_value
prompt = '{} {}/{} [{}]: '.format(prompt, true_value,
false_value, default_value)
i = input(prompt)
if not i:
return default
while True:
if i == true_value:
return True
elif i == false_value:
return False
prompt = 'Please input {} or {}: '.format(true_value, false_value)
i = input(prompt)
def main():
"""
主函数
"""
op = yes_or_no('请确保手机打开了 ADB 并连接了电脑,'
'然后打开跳一跳并【开始游戏】后再用本程序,确定开始?')
if not op:
print('bye')
return
print('程序版本号:{}'.format(VERSION))
debug.dump_device_info()
screenshot.check_screenshot()
i, next_rest, next_rest_time = (0, random.randrange(3, 10),
random.randrange(5, 10))
while True:
screenshot.pull_screenshot()
im = Image.open('./autojump.png')
# 获取棋子和 board 的位置
piece_x, piece_y, board_x, board_y = find_piece_and_board(im)
ts = int(time.time())
print(ts, piece_x, piece_y, board_x, board_y)
set_button_position(im)
jump(math.sqrt((board_x - piece_x) ** 2 + (board_y - piece_y) ** 2))
if DEBUG_SWITCH:
debug.save_debug_screenshot(ts, im, piece_x,
piece_y, board_x, board_y)
debug.backup_screenshot(ts)
im.close()
i += 1
if i == next_rest:
print('已经连续打了 {} 下,休息 {}s'.format(i, next_rest_time))
for j in range(next_rest_time):
sys.stdout.write('\r程序将在 {}s 后继续'.format(next_rest_time - j))
sys.stdout.flush()
time.sleep(1)
print('\n继续')
i, next_rest, next_rest_time = (0, random.randrange(30, 100),
random.randrange(10, 60))
# 为了保证截图的时候应落稳了,多延迟一会儿,随机值防 ban
time.sleep(random.uniform(0.9, 1.2))
if __name__ == '__main__':
main()