[1]
Lütjering G, Williams J C. Titanium[M]. 2nd ed. New York:Springer Berlin Heidelberg, 2007.
[2]
赵永庆. 我国创新研制的主要船用钛合金及其应用[J]. 中国材料进展, 2014, 33(7):398-404
Zhao Yongqing. The new main titanium alloys used for shipbuilding developed in China and their applications[J]. Materials China, 2014, 33(7):398-404
[3]
常 辉. 钛材料在海洋工程中的应用[N]. 北京:中国有色金属报, 2018.
[4]
赵凤桐. 钛及钛合金在氯碱工业上的应用[J]. 氯碱工业, 1991, 6:33-42
Zhao Fengtong. Application of titanium and titanium alloys in chlor-alkali industry[J]. Chlor-Alkali Industry, 1991, 6:33-42
[5]
余存烨. 耐蚀钛合金的发展[J]. 钛工业进展, 2003, 20(1):12-19
Yu Cunye. Development of corrosion resistant titanium alloys[J]. Titanium Industry Progress, 2003, 20(1):12-19
[6]
Atapour M, Pilchak A L, Shamanian M, et al. Corrosion behavior of Ti-8Al-1Mo-1V alloy compared to Ti-6Al-4V[J]. Material Design, 2011, 32(3):1692-1696.
[7]
Raja V S, Shoji T. Stress corrosion cracking[M]. Cambridge:Woodhead Publishing, 2011:381-408.
[8]
Wanhill R J H. Aqueous stress corrosion in titanium alloys[J]. British Corrosion Journal, 1975, 10:69-78.
[9]
李晓延, 巩水利, 关 桥, 等. 大厚度钛合金结构电子束焊接制造基础研究[J]. 焊接学报, 2010, 31(2):107-112
Li Xiaoyan, Gong Shuili, Guan Qiao, et al. Fundamental research on electron beam welding of heavy section titanium alloy structures[J]. Transactions of the China Welding Institution, 2010, 31(2):107-112
[10]
Weglowski M S, Blacha S, Phillips A. Electron beam welding-techniques and trends-review[J]. Vacuum, 2016, 130:72-92.
[11]
石铭霄. 钛合金电子束深熔焊传热传质及质量控制研究[D]. 兰州:兰州理工大学, 2013.
[12]
侯江涛. TC4 钛合金高能束流焊接焊缝组织研究[D]. 武汉:华中科技大学, 2009.
[13]
吴会强, 冯吉才, 何景山, 等. 电子束焊接热输入对 Ti-6Al-4V 组织结构的影响[J]. 焊接学报, 2004, 25(5):41-44
Wu Huiqiang, Feng Jicai, He Jingshan, et al. Effect of electron beam welding heat input on microstructure of Ti-6Al-4V[J]. Transactions of the China Welding Institution, 2004, 25(5):41-44
[14]
龚玉兵, 王善林, 李 娟, 等. 厚板TC4钛合金电子束焊接头组织演变规律[J]. 焊接学报, 2017, 38(9):91-96
Gong Yubing, Wang Shanlin, Li Juan, et al. Microstructure evolution of thick TC4 titanium alloy vacuum electron beam welded joint[J]. Transactions of the China Welding Institution, 2017, 38(9):91-96
[15]
安飞鹏, 王其红, 李士凯, 等. 深潜器用Ti80电子束焊接接头精细组织结构特征[J]. 焊接学报, 2017, 38(5):96-99
An Feipeng, Wang Qihong, Li Shikai, et al. Microstructure of electron beam welded thick-wall Ti80 joint[J]. Transactions of the China Welding Institution, 2017, 38(5):96-99
[16]
旷小聪. 超大厚度TA15钛合金电子束焊接及热处理工艺研究[D]. 南昌:南昌航空大学, 2017.
[17]
余 陈, 张宇鹏, 房卫萍, 等. 焊后热处理对100 mm TC4钛合金电子束焊接接头残余应力的影响[J]. 材料热处理学报, 2018, 39(7):151-155
Yu Chen, Zhang Yupeng, Fang Weiping, et al. Effect of post welding heat treatment on residual stress of 100 mm TC4 Ti-alloy welded joint by electron beam welding[J]. Transactions of Materials and Heat Treatment, 2018, 39(7):151-155
[18]
吴 冰, 张建勋, 巩水利, 等. 厚板钛合金电子束焊接残余应力分布特征[J]. 焊接学报, 2010, 31(2):10-12
Wu Bing, Zhang Jianxun, Gong Shuili, et al. Residual stress distribution of large thickness titanium alloy joints by electron beam welding[J]. Transactions of the China Welding Institution, 2010, 31(2):10-12
[19]
Han W, Fu L, Chen H Y. Effect of welding speed on fatigue properties of TC18 thick plate by electron beam welding[J]. Rare Metal Materials and Engineering, 2018, 47(8):2335-2340.
[20]
吴俊升, 林 超, 彭冬冬, 等. Q345D低合金钢在海洋潮差区的腐蚀规律及电化学行为研究[J]. 机械工程学报, 2016, 52(20):30-36
Wu Junsheng, Lin Chao, Peng Dongdong, et al. Electrochemical investigation and corrosion behavior of low alloy steel Q345D in marine tidal zone[J]. Journal of Mechanical Engineering, 2016, 52(20):30-36
[21]
马宏驰, 刘智勇, 杜翠薇, 等. SO2质量分数对污染海洋大气环境中高强钢E690腐蚀行为的影响[J]. 机械工程学报, 2016, 52(16):33-41
Ma Hongchi, Liu Zhiyong, Du Cuiwei, et al. Effect of SO2 content on corrosion behavior of high-strength steel E690 in polluted marine atmosphere[J]. Journal of Mechanical Engineering, 2016, 52(16):33-41
[22]
黄 涛, 陈小平, 王向东, 等. 高强耐候钢在NaCl溶液中的腐蚀锈层特征和耐腐蚀性研究[J]. 机械工程学报, 2017, 53(20):45-53
Huang Tao, Chen Xiaoping, Wang Xiangdong, et al. A study on the rust characteristics and corrosion resistance of high strength weathering steels in NaCl solution[J]. Journal of Mechanical Engineering, 2017, 53(20):45-53
[23]
刘 焱. 感应热处理TC4合金焊缝的应力腐蚀及慢拉伸时电化学行为[D]. 哈尔滨:哈尔滨工业大学, 2017.
[24]
Sheng C, Suming Z, Chao V, et al. The mechanism of aqueous stress-corrosion cracking of α + β titanium alloys[J]. Corrosion Science, 2017, 125:29-39.