当前位置: 首页 > 工具软件 > Alda > 使用案例 >

聚类LDA

贺季同
2023-12-01

1. 聚类LDA

1.1 概念

LDALatent Dirichlet Allocation)是一种文档主题生成模型,也称为一个三层贝叶斯概率模型,包含词、主题和文档三层结构。所谓生成模型,就是说,我们认为一篇文章的每个词都是通过以一定概率选择了某个主题,并从这个主题中以一定概率选择某个词语这样一个过程得到。文档到主题服从多项式分布,主题到词服从多项式分布。[1] 

LDA是一种非监督机器学习技术,可以用来识别大规模文档集(documentcollection)或语料库(corpus)中潜藏的主题信息。它采用了词袋(bag of words)的方法,这种方法将每一篇文档视为一个词频向量,从而将文本信息转化为了易于建模的数字信息。但是词袋方法没有考虑词与词之间的顺序,这简化了问题的复杂性,同时也为模型的改进提供了契机。每一篇文档代表了一些主题所构成的一个概率分布,而每一个主题又代表了很多单词所构成的一个概率分布。

 

1.2 用处

聚类,显示出高权重的主题。词

1.3 细节

有em和online两种方式,不同方式设置的参数和结果不同。

Model有两个参数likelihood(越大越好)和Perplexity(越小越好)

1.4 Demo

package spark.mllib

import org.apache.spark.ml.Pipeline
import org.apache.spark.ml.feature.{Normalizer, PCA}
import org.apache.spark.ml.linalg.{Vector, Vectors}
import org.apache.spark.mllib.linalg.{Vector, Vectors}
import org.apache.spark.sql.functions.{col, udf}
import org.apache.spark.sql.types.{ArrayType, StringType, StructField, StructType}
import org.apache.spark.sql.{Column, DataFrame, Row, SparkSession}
import org.apache.spark.{SparkConf, SparkContext}

import scala.collection.mutable
import scala.collection.mutable.ArrayBuffer

/**
  * Created by liuwei on 2017/7/24.
  */
object LDATest {
  def main(args: Array[String]): Unit = {
    import org.apache.spark.ml.clustering.LDA
    import org.apache.spark.ml.linalg.Vector
    import org.apache.spark.ml.linalg.Vectors

    val sparkConf = new SparkConf().setAppName("LDATest").setMaster("local[8]")
    val sc = new SparkContext(sparkConf)
    val spark = SparkSession.builder.getOrCreate()

    // Loads data.
    val dataset:DataFrame = spark.read.format("libsvm")
      .load("data/mllib/sample_lda_libsvm_data.txt")


    dataset.show(false)

    // Trains a LDA model.
    val lda = new LDA()
      .setK(10)//k: 主题数,或者聚类中心数 >1
      .setMaxIter(10)// MaxIterations:最大迭代次数 >= 0
//      .setCheckpointInterval(1) //迭代计算时检查点的间隔  set checkpoint interval (>= 1) or disable checkpoint (-1)
      .setDocConcentration(0.1) //文章分布的超参数(Dirichlet分布的参数),必需>1.0
      .setTopicConcentration(0.1)//主题分布的超参数(Dirichlet分布的参数),必需>1.0
      .setOptimizer("online")   //默认 online 优化计算方法,目前支持"em", "online"
    val model = lda.fit(dataset.select("features"))


    val ll = model.logLikelihood(dataset)
    val lp = model.logPerplexity(dataset)
    println(s"The lower bound on the log likelihood of the entire corpus: $ll")
    println(s"The upper bound on perplexity: $lp")

    val hm2 = new mutable.HashMap[Int,String]
//   val a =  sc.textFile("data/mllib/C0_segfeatures.txt").map( x => x.split(",")).map( x =>
//      hm2.put(x(0).replaceAll("\"","").toInt,x(1).replaceAll("\"",""))
      hm2.put()
//    )
//    println(a.count())
//    hm2.put("ok","ok")

//    var data  = sc.textFile("data/mllib/C0_segfeatures.txt").map( x => x.split(",")).collect()
//    data.foreach{pair => hm2.put(pair(0).replaceAll("\"","").toInt,pair(1).replaceAll("\"",""))}
//    println(hm2+"============")

//    val rdd = sc.textFile("data/mllib/C0_segfeatures.txt").map( x => x.split(",")).map( x =>
//      Row(x(0).replaceAll("\"",""),x(1).replaceAll("\"",""))
//    )
//    var data = rdd.collect()
//    data.foreach{pair => hm2.put(pair._1,pair._2)}

//    val schema = StructType(
//      Seq(
//        StructField("index",StringType,true)
//        ,StructField("word",StringType,true)
//      )
//    )
//    val wordDataset = spark.createDataFrame(rdd,schema)

    val hm = mutable.HashMap(1 -> "b", 2 -> "c",3-> "d", 6 -> "a",9-> "e", 10 -> "f")

//    model.l
    val resultUDF = udf((termIndices: mutable.WrappedArray[Integer]) => {//处理第二列输出
      termIndices.map(index=>
//        hm2.get(index)
        index
      )
    })

    // Describe topics.
    val topics = model.describeTopics(10)//.withColumn("termIndices", resultUDF(col("termIndices")))



    println(topics.schema)
//      .withColumn("termIndices", resultUDF(col("termIndices"))).withColumn("termWeights", resultUDF(col("termWeights")))
    println("The topics described by their top-weighted terms:")


//    topics.join(topics, wordDataset("index") === topics("termIndices")).show()
    topics.show(false)
   val cosUDF = udf {
      (vector: Vector) =>
        vector.argmax
    }



    // Shows the result.
    var transformed = model.transform(dataset)
    transformed = transformed.withColumn("prediction",cosUDF(col("topicDistribution")))
    println(transformed.schema)
    transformed.show(false)
    println(" transform start. ").setK(5).fit(df)

    val result = pca.transform(df).select("pcaFeatures")
    result.show(false)
  }

}


 类似资料: